bergamottin has been researched along with Inflammation* in 2 studies
2 other study(ies) available for bergamottin and Inflammation
Article | Year |
---|---|
Bergamottin protects against LPS-induced endotoxic shock by regulating the NF-κB signaling pathway.
Bergamottin is a natural furanocoumarin compound that possesses antioxidative and anti-cancer properties; however, the effect of Bergamottin on lipopolysaccharide (LPS)-induced inflammation response is unknown. In this study, we investigated the protective effects and mechanisms of Bergamottin against LPS-induced inflammatory responses.Raw264.7 cells were pre-treated with Bergamottin, then stimulated with LPS. Morphologic analysis and flow cytometry were used to measure Bergamottin-related cytotoxicity. ELISA and qPCR were performed to measure secretion and transcription activities of inflammatory cytokines. Biochemical analysis was used to determine the expression of tissues damage indicators. Western blots were used to determine protein expression, and immunofluorescence staining was used to determine the co-localization of NF-κB and RelA. Hematoxylin and eosin staining was used to show the pathological damages.Bergamottin had no cytotoxic effects on Raw264.7 cells. Pre-treatment with Bergamottin inhibited inflammatory cytokines expression and secretion induced by LPS, due to the inhibition of LPS-induced NF-κB signaling pathway activation, and improved pathological damages. These findings suggest that Bergamottin protects against LPS-induced endotoxin shock by regulating the NF-κB signaling pathway. Topics: Animals; Cytokines; Furocoumarins; Inflammation; Lipopolysaccharides; Mice; NF-kappa B; RAW 264.7 Cells; Shock, Septic; Signal Transduction | 2022 |
Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells.
Persistent activation of signal transducers and activator of transcription 3 (STAT3) has been closely related to growth, survival, proliferation, metastasis, and angiogenesis of various cancer cells, and thus its inhibition can be considered a potential therapeutic strategy. In this study, we investigated the role of bergamottin (BGM) obtained from grapefruit juice in abrogating the constitutive STAT3 activation in multiple myeloma (MM) cells. This suppression was mediated through the inhibition of phosphorylation of Janus-activated kinase (JAK) 1/2 and c-Src. Pervanadate reversed the BGM induced down-regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase (PTP). Furthermore, BGM induced the expression of the tyrosine phosphatase SHP-1, and gene silencing of the SHP-1 by small interfering RNA abolished the ability of BGM to inhibit STAT3 activation, suggesting a critical role for SHP-1 in the action of BGM. BGM also downregulated the expression of STAT3-regulated gene products such as COX-2, VEGF, cyclin D1, survivin, IAP-1, Bcl-2, and Bcl-xl in MM cells. This correlated with induction of substantial apoptosis as indicated by an increase in the sub-G1 cell population and caspase-3 induced PARP cleavage. Also, this agent significantly potentiated the apoptotic effects of bortezomib and thalidomide in MM cells. Overall, these results suggest that BGM is a novel blocker of STAT3 activation pathway thus may have a potential in therapy of MM and other cancers. Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Cell Survival; Citrus paradisi; Furocoumarins; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Inflammation; Multiple Myeloma; Neoplasm Invasiveness; Neoplasm Metastasis; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Signal Transduction; STAT3 Transcription Factor | 2014 |