benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and Myelodysplastic-Syndromes

benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with Myelodysplastic-Syndromes* in 3 studies

Other Studies

3 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and Myelodysplastic-Syndromes

ArticleYear
Activity of the caspase-3/CPP32 enzyme is increased in "early stage" myelodysplastic syndromes with excessive apoptosis, but caspase inhibition does not enhance colony formation in vitro.
    Experimental hematology, 2000, Volume: 28, Issue:7

    Excessive apoptosis may have a role in the ineffective hematopoiesis and cytopenias observed in myelodysplastic syndromes. The goals of this study were 1) to quantify apoptosis in patients with "early stage" myelodysplasia [including patients with refractory anemia (RA), RA with ringed sideroblasts (RARS), RA with excess blasts and with less than 10% blasts (RAEB(<10))], and in patients with "late stage" myelodysplasia [including RAEB with more than 10% blasts (RAEB(>10)), RAEB in transformation (RAEB-t), and acute myeloid leukemia secondary to myelodysplasia (LAM2)]; 2) to study the activation of the caspase-3/CPP32 enzyme, a major "effector" caspase in hematopoiesis, in patients with "early stage" myelodysplasia, and 3) to evaluate the effect of caspase inhibition on the apoptotic phenotype and clonogenicity of hematopoietic progenitors in vitro in these patients.. Fifty-four patients with myelodysplastic syndromes, including 30 with "early stage" myelodysplasia and 24 with "late stage" myelodysplasia were studied. Study of apoptosis: TUNEL assay performed on bone marrow smears and/or quantification of annexin V positive bone marrow mononuclear cells by flow cytometric analysis. Caspacse-3/CPP32 activity: Quantitative measurement of caspase-3/CPP32 activity on total bone marrow mononuclear cells using a fluorogenic substrate. Effect of the caspase-inhibitor Z-VAD-FMK: 1) on the apoptotic phenotype of total bone marrow mononuclear cells and 2) on the clonogenicity of hematopoietic progenitor cells.. The group of 30 patients with "early stage" myelodysplasia had statistically increased apoptosis compared to the group of 24 patients with "late stage" myelodysplasia (44.1% +/- 4.8 vs 21.8% +/- 3.6; p = 0.02) using the TDT-mediated dUTP nick-end labeling (TUNEL) assay. In the group of patients with RAEB, those with MDS(RAEB<10) had excessive apoptosis compared to those with MDS(RAEB>10) (44.0% +/- 3.5% vs 29.5% +/- 3.6%;p = 0.042) The median caspase-3 activity in 20 "early stage" myelodysplasia patients was 19,000 U (range 3,460-41,000) and significantly increased compared to normal individuals (4,256 U, range 3,200-5,200; p = 0.032) Bone marrow mononuclear cells from 12 "early stage" MDS patients (including 11 from the 20 studied for caspase-3 activity) were incubated with or without the broad-spectrum caspase inhibitor Z-VAD-FMK. In 4 of 9 evaluable patients (44.4%) with excessive apoptosis, the number of annexin V positive cells decreased in a dose-dependent manner in the presence of Z-VAD-FMK. However, in none of these patients was caspase inhibition with Z-VAD-FMK able to enhance colony formation in vitro.. These results confirm that a major characteristic of patients with "early stage" myelodysplasia is increased apoptosis. The results also indicate that excessive apoptosis in these patients is accompanied by increased caspase-3/CPP32 activity. However, caspase inhibition with the broad-spectrum inhibitor Z-VAD-FMK cannot improve hematopoiesis in this group of patients, even when apoptosis is attenuated.

    Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Caspase 3; Caspase Inhibitors; Caspases; Cells, Cultured; Colony-Forming Units Assay; Cysteine Proteinase Inhibitors; Hematopoietic Stem Cells; Humans; Myelodysplastic Syndromes; Oligopeptides; Time Factors

2000
Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39.
    Experimental hematology, 1999, Volume: 27, Issue:8

    P39/Tsugane is a myelomonocytoid cell line derived from a patient with myelodysplastic syndrome (MDS). The cells readily undergo apoptosis in response to various agents, and the cell line has been suggested as a useful model to study apoptosis in MDS. The aims of the present study were to assess differentiation and apoptosis induced with all-trans retinoic acid (ATRA) and etoposide, to characterize the mode of apoptosis in these two model systems, and to assess the influence of granulocyte colony-stimulating factor (G-CSF), which in combination with erythropoietin has been shown to inhibit apoptosis in MDS. ATRA induced differentiation and apoptosis in a concentration- and time-dependent manner. Differentiated cells were partially rescued (by 50%) from apoptosis with G-CSF. Etoposide induced apoptosis in a concentration- and time-dependent manner, but no signs of preceding maturation or G-CSF rescue were detected. ATRA- and etoposide-induced apoptosis were both mediated through the caspase pathway and were partially blocked with the general caspase inhibitor zVAD-fmk. Simultaneous treatment with G-CSF and zVAD-fmk additively blocked ATRA-induced apoptosis. However, the two pathways differed in terms of substrate cleavage during apoptosis. ATRA-induced apoptosis caused actin cleavage, which was not affected by G-CSF, and Bcl-2 downregulation. Etoposide induced a caspase-dependent cleavage of Bcl-2, while actin remained intact. The Fas system did not seem to play a major role in any of these apoptotic pathways. Our results may provide new tools to study the mechanisms of apoptosis in MDS.

    Topics: Actins; Acute Disease; Amino Acid Chloromethyl Ketones; Antibodies, Monoclonal; Apoptosis; Blast Crisis; Caspase Inhibitors; Caspases; Cell Differentiation; Cysteine Proteinase Inhibitors; Cytoskeleton; Erythropoietin; Etoposide; fas Receptor; Granulocyte Colony-Stimulating Factor; Humans; Leukemia, Myeloid; Myelodysplastic Syndromes; Neoplasm Proteins; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Tretinoin; Tumor Cells, Cultured

1999
Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes.
    Journal of hematotherapy & stem cell research, 1999, Volume: 8, Issue:4

    Myelodysplastic syndromes (MDS) are a group of hematopoietic disorders characterized by the concomitant presence of peripheral cytopenias and normocellular to hypercellular BM. This paradox has been proposed to be due to the presence of excessive proliferation matched by excessive intramedullary apoptosis of hematopoietic cells. When cultured in vitro MDS BM mononuclear cells (BMMC) undergo apoptosis within 4 h. We measured caspase-1-like and caspase-3-like activity in 22 MDS and 4 normal BM immediately following cell separation or after 4 h culture. When cultured in vitro, MDS BMMC demonstrated an increased apoptotic index within 4 h as measured by in situ end-labeling of fragmented DNA that was matched by a concurrent increase in caspase-3-like specific activity, and the two were significantly correlated. During the 4 h culture, a sequential activation of caspase-1-like and caspase-3-like activities was detected. Caspase-1-like specific activity was detected early and transiently at approximately 15 min, followed by a gradual increase in caspase-3-like-specific activity peaking at 2 h. When the broad-spectrum caspase inhibitor, Z-VAD.FMK, was included in the MDS BM aspirate 4 h culture, apoptosis was attenuated. We conclude that sequential activation of caspase-1-like and caspase-3-like activities may form the central biochemical pathway of apoptosis in BMMC from some MDS patients, and prevention of this process by caspase inhibitors may be of significant therapeutic value for these patients, in whom supportive care continues to be the mainstay of therapy.

    Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Caspase 1; Caspase 3; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; Enzyme Activation; Humans; Myelodysplastic Syndromes

1999