benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with Lewy-Body-Disease* in 2 studies
2 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and Lewy-Body-Disease
Article | Year |
---|---|
Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective.
Lewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing alpha-synuclein and its interacting partner synphilin-1 using engineered 293T cells. Inhibition of proteasome activity elicited the formation of juxtanuclear aggregates with characteristics of aggresomes including immunoreactivity for vimentin, gamma-tubulin, ubiquitin, proteasome subunit, and hsp70. As expected from the properties of aggresomes, the microtubule disrupting agents, vinblastin and nocodazole, markedly prevented the formation of these inclusions. Similar to LBs, the phosphorylated form of alpha-synuclein co-localized in these synphilin-1-containing aggresomes. Although the caspase inhibitor z-VAD-fmk significantly reduced the number of apoptotic cells, it had no impact on the percentage of aggresome-positive cells. Finally, quantitative analysis revealed aggresomes in 60% of nonapoptotic cells but only in 10% of apoptotic cells. Additionally, alpha-synuclein-induced apoptosis was not coupled with increased prevalence of aggresome-bearing cells. Taken together, these observations indicate a disconnection between aggresome formation and apoptosis, and support a protective role for these inclusions from the toxicity associated with the combined over-expression of alpha-synuclein and synphilin-1. Topics: alpha-Synuclein; Amino Acid Chloromethyl Ketones; Apoptosis; Carrier Proteins; Cell Line; Cell Survival; Cysteine Proteinase Inhibitors; Humans; Inclusion Bodies; Lewy Bodies; Lewy Body Disease; Macromolecular Substances; Microtubules; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nocodazole; Parkinson Disease; Recombinant Proteins; Synucleins; Transfection; Vinblastine | 2004 |
Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells.
Proteasomal dysfunction has been recently implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and diffuse Lewy body disease. We have developed an in vitro model of proteasomal dysfunction by applying pharmacological inhibitors of the proteasome, lactacystin or ZIE[O-tBu]-A-leucinal (PSI), to dopaminergic PC12 cells. Proteasomal inhibition caused a dose-dependent increase in death of both naive and neuronally differentiated PC12 cells, which could be prevented by caspase inhibition or CPT-cAMP. A percentage of the surviving cells contained discrete cytoplasmic ubiquitinated inclusions, some of which also contained synuclein-1, the rat homologue of human alpha-synuclein. However the total level of synuclein-1 was not altered by proteasomal inhibition. The ubiquitinated inclusions were present only within surviving cells, and their number was increased if cell death was prevented. We have thus replicated, in this model system, the two cardinal pathological features of Lewy body diseases, neuronal death and the formation of cytoplasmic ubiquitinated inclusions. Our findings suggest that inclusion body formation and cell death may be dissociated from one another. Topics: Acetylcysteine; alpha-Synuclein; Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Cell Differentiation; Cyclic AMP; Cysteine Endopeptidases; Immunoblotting; Immunohistochemistry; Inclusion Bodies; Lewy Body Disease; Multienzyme Complexes; Nerve Tissue Proteins; Neuroprotective Agents; Oligopeptides; Parkinson Disease; PC12 Cells; Protease Inhibitors; Proteasome Endopeptidase Complex; Rats; Synucleins; Ubiquitins | 2001 |