benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone has been researched along with Brain-Ischemia* in 17 studies
17 other study(ies) available for benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone and Brain-Ischemia
Article | Year |
---|---|
Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury.
Necroptosis, a novel type of programmed cell death, is involved in stroke-induced ischemic brain injury. Although studies have sought to explore the mechanisms of necroptosis, its signaling pathway has not yet to be completely elucidated. Thus, we used oxygen-glucose deprivation (OGD) and middle cerebral artery occlusion (MCAO) models mimicking ischemic stroke (IS) conditions to investigate mechanisms of necroptosis. We found that OGD and MCAO induced cell death, local brain ischemia and neurological deficit, while zVAD-fmk (zVAD, an apoptotic inhibitor), GSK'872 (a receptor interacting protein kinase-3 (RIP3) inhibitor), and combined treatment alleviated cell death and ischemic brain injury. Moreover, OGD and MCAO upregulated protein expression of the triggers of necroptosis: receptor interacting protein kinase-1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL). The upregulation of these proteins was inhibited by GSK'872, combination treatments and RIP3 siRNA but not zVAD treatment. Intriguingly, hypoxia-inducible factor-1 alpha (HIF-1α), an important transcriptional factor under hypoxic conditions, was upregulated by OGD and MCAO. Similar to their inhibitory effects on aforementioned proteins upregulation, GSK'872, combination treatments and RIP3 siRNA decreased HIF-1α protein level. These findings indicate that necroptosis contributes to ischemic brain injury induced by OGD and MCAO and implicate HIF-1α, RIP1, RIP3, and MLKL in necroptosis. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Brain Injuries; Brain Ischemia; Cell Line; Down-Regulation; Glucose; GTPase-Activating Proteins; Hypoxia-Inducible Factor 1, alpha Subunit; Infarction, Middle Cerebral Artery; Male; Mice, Inbred C57BL; Necrosis; Oxygen; Receptor-Interacting Protein Serine-Threonine Kinases; Reperfusion Injury; RNA, Small Interfering | 2017 |
Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways.
It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced downregulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke. Topics: Adenine; Amino Acid Chloromethyl Ketones; Animals; Autophagy; Biomarkers; Brain; Brain Ischemia; Cathepsin B; Cysteine Proteinase Inhibitors; Humans; Infarction, Middle Cerebral Artery; Lysosomes; Male; Neurons; Neuroprotective Agents; Phagosomes; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Signal Transduction | 2008 |
Caspase-dependent cell death involved in brain damage after acute subdural hematoma in rats.
Traumatic brain injury is associated with acute subdural hematoma (ASDH) that worsens outcome. Although early removal of blood can reduce mortality, patients still die or remain disabled after surgery and additional treatments are needed. The blood mass and extravasated blood induce pathomechanisms such as high intracranial pressure (ICP), ischemia, apoptosis and inflammation which lead to acute as well as delayed cell death. Only little is known about the basis of delayed cell death in this type of injury. Thus, the purpose of the study was to investigate to which extent caspase-dependent intracellular processes are involved in the lesion development after ASDH in rats. A volume of 300microL blood was infused into the subdural space under monitoring of ICP and tissue oxygen concentration. To asses delayed cell death mechanisms, DNA fragmentation was measured 1, 2, 4 and 7 days after ASDH by TUNEL staining, and the effect of the pan-caspase inhibitor zVADfmk on lesion volume was assessed 7 days post-ASDH. A peak of TUNEL-positive cells was found in the injured cortex at day 2 after blood infusion (53.4+/-11.6 cells/mm(2)). zVADfmk (160ng), applied by intracerebroventricular injection before ASDH, reduced lesion volume significantly by more than 50% (vehicle: 23.79+/-7.62mm(3); zVADfmk: 9.06+/-4.08). The data show for the first time that apoptotic processes are evident following ASDH and that caspase-dependent mechanisms play a crucial role in the lesion development caused by the blood effect on brain tissue. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Blood; Brain Infarction; Brain Injuries; Brain Ischemia; Caspases; Disease Models, Animal; Enzyme Inhibitors; Hematoma, Subdural, Acute; In Situ Nick-End Labeling; Intracranial Hypertension; Male; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Signal Transduction; Treatment Outcome | 2006 |
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.
The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies. Topics: Animals; Brain Ischemia; Cell Death; Cell Line, Tumor; Humans; Imidazoles; Indoles; Mice; Molecular Structure; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Receptor-Interacting Protein Serine-Threonine Kinases; Signal Transduction; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins | 2005 |
Combination of isoflurane and caspase inhibition reduces cerebral injury in rats subjected to focal cerebral ischemia.
Recent data indicate that the neuroprotective efficacy of isoflurane is not sustained. Delayed neuronal death, mediated in part by apoptosis, contributes to the gradual increase in the size of the infarction. These data suggest that isoflurane may not be able to inhibit delayed neuronal death. The prevention of apoptosis by a caspase inhibitor might provide neuroprotection in addition to that provided by isoflurane. The current study was conducted to determine whether isoflurane-mediated neuroprotection can be made more durable with the administration of z-VAD-fmk, a nonspecific caspase inhibitor.. Fasted Wister rats were allocated to awake-zVAD, awake-vehicle, isoflurane-zVAD, or isoflurane-vehicle groups (n = 16/group). Animals were subjected to focal ischemia for 60 min by filament occlusion of the middle cerebral artery. In the awake groups, isoflurane was discontinued after occlusion of the middle cerebral artery. In the isoflurane groups, isoflurane anesthesia was maintained at 1.5 minimum alveolar concentration during occlusion of the middle cerebral artery. Before and after ischemia, daily injections of z-VAD-fmk or vehicle were administered into the lateral cerebral ventricle for 14 days. Neurologic assessment was performed 14 days after ischemia. The volume of cerebral infarction and the number of intact neurons in the periinfarct cortex were determined by image analysis of hematoxylin and eosin-stained coronal brain sections.. Infarction volume was less in the isoflurane-zVAD group (23 +/- 11 mm, mean +/- SD) than in isoflurane-vehicle, awake-vehicle, and awake-zVAD groups (82 +/- 31, 86 +/- 31, and 59 +/- 25 mm, respectively; P < 0.05). In comparison with the awake-vehicle and isoflurane-vehicle groups, the administration of z-VAD-fmk significantly decreased infarction volume (P < 0.05). The infarction volume between the awake-vehicle and isoflurane-vehicle groups was not different. The number of intact neurons within the periinfarct cortex was significantly less in the awake-vehicle group than in the other three groups (P < 0.05). The isoflurane-zVAD group demonstrated better neurologic function than the awake-vehicle group (P < 0.05).. These findings are consistent with the premise that ongoing delayed neuronal death, in part mediated by apoptosis, contributes to the progression of cerebral infarction during the recovery period, and its inhibition can provide sustained neuroprotection. Topics: Amino Acid Chloromethyl Ketones; Anesthetics, Inhalation; Animals; Blood Gas Analysis; Brain; Brain Ischemia; Caspase Inhibitors; Enzyme Inhibitors; Hemodynamics; Infarction, Middle Cerebral Artery; Isoflurane; Male; Neurons; Neuroprotective Agents; Rats; Rats, Wistar | 2004 |
Apoptosis is not an invariable component of in vitro models of cortical cerebral ischaemia.
Characterising the mechanisms of cell death following focal cerebral ischaemia has been hampered by a lack of an in vitro assay emulating both the apoptotic and necrotic features observed in vivo. The present study systematically characterised oxygen-glucose-deprivation (OGD) in primary rat cortical neurones to establish a reproducible model with components of both cell-death endpoints. OGD induced a time-dependent reduction in cell viability, with 80% cell death occurring 24 h after 3 h exposure to 0% O2 and 0.5 mM glucose. Indicative of a necrotic component to OGD-induced cell death, N-methyl-D-aspartate (NMDA) receptor inhibition with MK-801 attenuated neuronal loss by 60%. The lack of protection by the caspase inhibitors DEVD-CHO and z-VAD-fmk suggested that under these conditions neurones did not die by an apoptotic mechanism. Moderating the severity of the insult by decreasing OGD exposure to 60 min did not reduce the amount of necrosis, but did induce a small degree of apoptosis (a slight reduction in cell death was observed in the presence of 10 uM DEVD-CHO). In separate experiments purported to enhance the apoptotic component, cells were gradually deprived of O2, exposed to 4% O2 (as opposed to 0%) during the OGD period, or maintained in serum-containing media throughout. While NMDA receptor antagonism significantly reduced cortical cell death under all conditions, a caspase-inhibitor sensitive component of cell death was not uncovered. These studies suggest that OGD of cultured cortical cells models the excitotoxic, but not the apoptotic component of cell death observed in vivo. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Brain Ischemia; Caspases; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glucose; Models, Biological; N-Methylaspartate; Neurons; Oligopeptides; Oxygen; Rats; Rats, Sprague-Dawley; Staurosporine; Time Factors | 2004 |
Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats.
Focal ischemia in the cerebral cortex results in acute and delayed cell death in the ischemic cortex and non-ischemic thalamus. We examined the hypothesis that neurons in ischemic and non-ischemic regions died from different mechanisms; specifically, we tested whether a mixed form of cell death containing both necrotic and apoptotic changes could be identified in individual cells. Focal barrel cortex ischemia in rats was induced by occlusion of small branches of the middle cerebral artery (MCA) corresponding to the barrel cortex, local blood flow was measured by quantitative autoradiography. Cell death was visualized by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (H&E) staining, the terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and caspase-3 staining 1 to 10 days after the ischemia. Electron microscopy was used for ultrastructural examination. Cell death occurred in the ipsilateral cortex 24 h after ischemia, followed by selective neuronal death in the ventrobasal (VB) thalamus 3 days later. TUNEL positive neurons were found in these two regions, but with striking morphological differences, designated as type I and type II TUNEL positive cells. The type I TUNEL positive cells in the ischemic cortex underwent necrotic changes. The type II TUNEL positive cells in the thalamus and the cortex penumbra region represented a hybrid death, featured by concurrent apoptotic and necrotic alterations in individual cells, including marked caspase-3 activation, nuclear condensation/fragmentation, but with swollen cytoplasm, damaged organelles and deteriorated membranes. Cell death in the thalamus and the cortex penumbra were attenuated by delayed administration of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD-FMK). Our data suggest that TUNEL staining should be evaluated with morphological changes, the hybrid death but not typical apoptosis occurs in the penumbra region and non-ischemic thalamus after cerebral ischemia. Topics: Amino Acid Chloromethyl Ketones; Analysis of Variance; Animals; Apoptosis; Autoradiography; Brain Ischemia; Caspase 3; Caspases; Cell Count; Cerebral Cortex; Functional Laterality; Infarction, Middle Cerebral Artery; Injections, Intraventricular; Microscopy, Electron; Necrosis; Neurons; Neuroprotective Agents; Rats; Rats, Wistar; Regional Blood Flow; Staining and Labeling; Tetrazolium Salts; Thalamus; Time Factors | 2004 |
Similar time-course of interleukin-1 beta production and extracellular-signal-regulated kinase (ERK) activation in permanent focal brain ischemic injury.
The present study investigated the activation of extracellular-signal-regulated kinase (ERK) and the potential role of interleukin-1 beta (IL-1beta) in the brain's response to focal brain ischemia in the permanent middle cerebral artery occlusion (pMCAO) model. Phosphorylated ERK p44 and p42 were increased time-dependently and significantly 18- and 28-fold, respectively, at 24-h post-pMCAO. Similarly, IL-1beta protein levels were significantly increased with the peak at 24 h in the lesioned core of the ischemic hemisphere compared to the contralateral side. Previous studies using various stimuli have shown ERK-dependent IL-1 induction. The results from our study suggest that this relation may also exist in vivo in ischemic brain tissue. Based on the progressive nature of IL-1 induction, we hypothetized that inhibition of interleukin-converting enzyme (ICE) could provide an extended time-window for neuroprotection. Therefore, we applied N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD x fmk), an ICE blocker 3 or 6 h after pMCAO. Reductions of infarct volume, however, were not observed. Taken together with previous results, where we showed protective activity of zVAD x fmk when given immediately after pMCAO, we conclude that the time window for zVAD x fmk is less than 3 h. Topics: Amino Acid Chloromethyl Ketones; Animals; Brain Ischemia; Caspase 1; Caspase Inhibitors; Enzyme Activation; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Immunoblotting; Infarction, Middle Cerebral Artery; Interleukin-1; JNK Mitogen-Activated Protein Kinases; Kinetics; Ligation; Magnetic Resonance Imaging; Male; MAP Kinase Kinase 4; Middle Cerebral Artery; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Inbred F344 | 2002 |
Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain.
These studies have addressed the role of caspase-3 activation in neuronal death after cerebral ischemia in different animal models. The authors were unable to show activation of procaspase-3 measured as an induction of DEVDase (Asp-Glu-Val-Asp) activity after focal or transient forebrain ischemia in rats. DEVDase activity could not be induced in the cytosolic fraction of the brain tissue obtained from these animals by exogenous cytochrome c/dATP and Ca2+. However, the addition of granzyme B to these cytosolic fractions resulted in a significant activation of DEVDase, confirming that the conditions were permissive to analyze proteolytic cleavage of the DEVD-AMC (7-amino-4-methyl-coumarin) substrate. Consistent with these findings, zVal-Ala-Asp-fluoromethylketone administered after focal ischemia did not have a neuroprotective effect. In contrast to these findings, a large increase in DEVDase activity was detected in a model of hypoxic-ischemia in postnatal-day-7 rats. Furthermore, in postnatal-day-7 animals treated with MK-801, in which it has been suggested that excessive apoptosis is induced, the authors were unable to detect activation of DEVDase activity but were able to induce it in vitro by the addition of cytochrome c/dATP and Ca2+ to the cytosolic fraction. Analysis of cytochrome c distribution did not provide definitive evidence for selective cytochrome c release in the permanent focal ischemia model, whereas in the transient model a small but consistent amount of cytochrome c was found in the cytosolic fraction. However, in both models the majority of cytochrome c remained associated with the mitochondrial fraction. In conclusion, the authors were unable to substantiate a role of mitochondrially derived cytochrome c and procaspase-3 activation in ischemia-induced cell death in adult brain, but did see a clear induction of caspase-3 in neonatal hypoxia. Topics: Amino Acid Chloromethyl Ketones; Animals; Animals, Newborn; Brain; Brain Ischemia; Caspase 3; Caspases; Cell Death; Cytochrome c Group; Dizocilpine Maleate; Enzyme Activation; Granzymes; Humans; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Peptide Hydrolases; Protein Precursors; Rats; Rats, Sprague-Dawley; Rats, Wistar; Serine Endopeptidases | 2002 |
Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia.
We tested the hypothesis that combined use of trophic factors and caspase inhibitors increases brain resistance to ischaemia in mice. Intracerebroventricular administration of bFGF (>10 ng) 30 min after MCA occlusion decreased infarct size and neurological deficit in a dose-dependent manner following 2 h ischemia and reperfusion (20 h). Combined administration of the subthreshold doses of bFGF (3 ng) and caspase inhibitors (z-VAD.FMK, 27 ng or z-DEVD.FMK, 80 mg) reduced infarct volume by 60%, and reduced neurological deficit. Treatment with a subthreshold dose of bFGF (3 ng) extended the therapeutic window for z-DEVD.FMK (480 ng) from 1 to 3 h after reperfusion. Caspase-3 activity in the ischaemic brain was increased 30 min and 2 h after reperfusion but, was significantly reduced in bFGF-treated animals by 29 and 16%, respectively. Caspase-3 activity was not reduced by a direct bFGF effect because addition of bFGF (10 nM - 2 microM) did not decrease recombinant caspase-3 activity, in vitro. Our data show that combining caspase inhibitors and bFGF lengthens the treatment window for the second treatment, plus lowers the dosage requirements for neuroprotection. These findings are important because low doses of caspase inhibitors or bFGF reduce the possibility of side effects plus extend the short treatment window for ischaemic stroke. Topics: Amino Acid Chloromethyl Ketones; Animals; Brain Ischemia; Caspase 3; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Drug Synergism; Drug Therapy, Combination; Fibroblast Growth Factor 2; Male; Mice; Neuroprotective Agents; Oligopeptides | 2001 |
Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats.
Studies show that blocking the activation of caspases by the caspase inhibitors z-VAD.FMK and z-DEVD.FMK can reduce ischemic neuronal injury after cerebral ischemia. Because the severity of ischemia was mild in some studies, we tested the efficacy of these caspase inhibitors on moderately severe but transient forebrain and focal ischemic insults in the rat.. Various regimens of z-VAD, z-DEVD, and control DMSO were given to rats subjected to either 4-vessel occlusion ischemia (4-VO, 10-minute occlusion, 7-day survival) or distal middle cerebral artery occlusion (MCAo, 90-minute occlusion, 22.5-hour survival). In global ischemia, treatments were given immediately after ischemia (experiment 1) or as preischemic and postischemic treatments (experiment 2). Three focal ischemia experiments were done. Injection times were 60 minutes into ischemia (experiment 1) and 60 minutes into ischemia plus 30 and 120 minutes after ischemia (experiment 2). Experiment 3 was identical to experiment 2 except that a 30-minute preischemia treatment was instituted. Core normothermia was maintained in all experiments during ischemia. However, in the last focal and global experiments, core and brain temperatures, respectively, were also measured after ischemia with telemetry probes. Because hyperthermia accompanied z-DEVD treatment, an extra z-DEVD-treated group (MCAo) was included with temperature clamped at normothermia.. Neither z-VAD nor z-DEVD significantly reduced CA1 injury after global ischemia. In focal ischemia, both drugs significantly reduced infarction, but only in the third experiment, and the prevention of hyperthermia that accompanied z-DEVD treatment did not alter this.. These results suggest a detrimental role of caspases in moderately severe focal but not global cerebral ischemia. Topics: Amino Acid Chloromethyl Ketones; Animals; Brain; Brain Ischemia; Caspases; Cysteine Proteinase Inhibitors; Male; Neuroprotective Agents; Oligopeptides; Rats; Rats, Wistar | 2000 |
Protective effect of a caspase inhibitor in models for cerebral ischemia in vitro and in vivo.
In primary neuronal-astrocyte cultures from mouse brain, ischemic conditions were simulated by combined oxygen-glucose deprival (OGD) for 2 hrs. This treatment resulted in near complete neuronal damage 24 hrs. later and was accompanied by DNA degradation and apoptotic nuclear morphology. Since caspases are key enzymes in the propagation and execution of programmed cell death, we evaluated the effect of the caspase inhibitor z-VAD-fmk. Damage following 2 hrs. OGD could be reduced by up to 56% with z-VAD-fmk (p<0.05). DNA-fragmentation and caspase activation has been also reported in an in vivo model of cerebral ischemia imitating human stroke. In this model the middle cerebral artery (MCA) is permanently occluded resulting in focal cerebral ischemia and subsequent infarction. Since z-VAD.fmk does not penetrate the blood-brain barrier it was applied intraventricularly as a bolus injection given 30 min. before MCA occlusion which was followed by 24 hrs. of infusion. Infarct volume was determined 48 hrs. after MCA occlusion by means of in vivo magnetic resonance imaging. Z-VAD.fmk dose dependently reduced infarct volume reaching a significant decrease of the cortical infarct by 45% when given as a 120 ng bolus followed by 40 ng/hr. infusion (p<0.05). In summary, our study supports the concept that caspase inhibitors are beneficial in brain ischemia. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Astrocytes; Brain; Brain Ischemia; Caspase Inhibitors; Dizocilpine Maleate; Enzyme Inhibitors; Glucose; Immunohistochemistry; In Situ Nick-End Labeling; L-Lactate Dehydrogenase; Magnetic Resonance Imaging; Mice; Neuroprotective Agents; Rats; Rats, Inbred F344; Stroke | 2000 |
mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage.
The differentiated cells seem to share the ability to induce their own death by the activation of an internally encoded suicide program. When activated, this suicide program initiates a characteristic form of cell death called apoptosis. A central challenge in apoptosis research is understanding the mechanisms by which apoptotic cascades are initiated and affected. We tested a potential role for calpain in the programmed cell death under ischemic conditions and found that calpain is (1) activated at a time preceding morphological changes, DNA fragmentation and death, (2) that calpain is translocated to the nucleus before DNA laddering, (3) pretreatment with caspase inhibitors and/or calpain inhibitors block not only the proteolytic actions of the enzyme, but also the cell death process itself in the CA1 subfield after transient global ischemia in a synergistic manner. In conclusion, the present results contribute additional evidence that proteases may play a functional role in apoptotic cell death and extend them to include the possibility that endogenous proteases are capable of inducing the striking DNA fragmentation and chromatin condensation, which are the principle criteria currently used to define apoptotic death. Moreover, the synergistic effect of caspase and calpain inhibitors in protecting neurons form ischemic damage suggests that there is a cross-talk between caspase and calpain during apoptosis. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Benzenesulfonates; Brain Ischemia; Calpain; Caspase Inhibitors; Caspases; Coloring Agents; Cysteine Proteinase Inhibitors; Disease Models, Animal; DNA Fragmentation; Drug Combinations; Drug Synergism; Glycoproteins; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Male; Neurons; Neuroprotective Agents; Oxazines; Rats; Rats, Wistar; Reperfusion Injury | 2000 |
Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells.
The cerebral endothelial cells (ECs) are a primary target of hypoxic or ischemic brain insults. EC damage may contribute to postischemic secondary injury. Massive production of NO after inducible NO synthase (iNOS) expression has been implicated in cell death. This study aimed to characterize bovine cerebral EC death in relation to iNOS expression after oxygen-glucose deprivation (OGD) in vitro.. OGD in bovine cerebral ECs in culture was induced by deleting glucose in the medium and by incubating the cells in a temperature-controlled anaerobic chamber. The extent of cell death was assessed by trypan blue exclusion, MTT assay, and LDH release. ELISA, gel electrophoresis, and staining by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling were used to examine DNA fragmentation. The expression of iNOS mRNA and protein was detected by reverse transcription-polymerase chain reaction and Western blotting, respectively. Nitrotyrosine expression was confirmed with Western blot analysis and immunostaining.. Bovine cerebral EC death was dependent on the duration of OGD and showed selected biochemical, morphological, and pharmacological features suggestive of apoptosis. OGD also induced the expression of iNOS mRNA and protein in bovine cerebral ECs. Increased expression of nitrotyrosine, the product formed by peroxynitrite reaction with proteins, was also detected after OGD. The involvement of iNOS in EC death was suggested by partial reduction of cell death by NO synthase inhibitors, including L-N(G)-(1-iminoethyl)ornithine and nitro-L-arginine, and an NO scavenger, the Fe(2+)-N-methyl-D-glucamine dithiocarbamate complex.. OGD-induced bovine cerebral EC death involves an apoptotic process. Induction of iNOS with subsequent peroxynitrite formation may contribute to bovine cerebral EC death caused by OGD. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Blood-Brain Barrier; Brain; Brain Ischemia; Caspase Inhibitors; Cattle; Cells, Cultured; Chelating Agents; Cysteine Proteinase Inhibitors; Cytochrome c Group; DNA Fragmentation; Endothelium, Vascular; Free Radicals; Gene Expression Regulation, Enzymologic; Glucose; In Situ Nick-End Labeling; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Oxygen; RNA, Messenger; Sorbitol; Spin Labels; Thiocarbamates; Tyrosine | 2000 |
Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice.
Recent studies have shown that release of mitochondrial cytochrome c is a critical step in the apoptosis process. We have reported that cytosolic redistribution of cytochrome c in vivo occurred after transient focal cerebral ischemia (FCI) in rats and preceded the peak of DNA fragmentation. Although the involvement of reactive oxygen species in the cytosolic redistribution of cytochrome c in vitro has been suggested, the detailed mechanism by which cytochrome c release is mediated in vivo has not yet been established. Also, the role of mitochondrial oxidative stress in cytochrome c release is unknown. These issues can be addressed using knock-out mutants that are deficient in the level of the mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD). In this study we examined the subcellular distribution of the cytochrome c protein in both wild-type mice and heterozygous knock-outs of the Mn-SOD gene (Sod2 -/+) after permanent FCI, in which apoptosis is assumed to participate. Cytosolic cytochrome c was detected as early as 1 hr after ischemia, and correspondingly, mitochondrial cytochrome c showed a significant reduction 2 hr after ischemia (p < 0.01). Cytosolic accumulation of cytochrome c was significantly higher in Sod2 -/+ mice compared with wild-type animals (p < 0.05). N-benzyloxycarbonyl-val-ala-asp-fluoromethyl ketone (z-VAD.FMK), a nonselective caspase inhibitor, did not affect cytochrome c release after ischemia. A significant amount of DNA laddering was detected 24 hr after ischemia and increased in Sod2 -/+ mice. These data suggest that Mn-SOD blocks cytosolic release of cytochrome c and could thereby reduce apoptosis after permanent FCI. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Blood Pressure; Brain; Brain Ischemia; Cardiomyopathy, Dilated; Cerebral Cortex; Cerebral Infarction; Cysteine Proteinase Inhibitors; Cytochrome c Group; Cytosol; DNA Fragmentation; Heterozygote; Ischemic Attack, Transient; Male; Mice; Mice, Knockout; Mitochondria; Oxidative Stress; Rats; Superoxide Dismutase; Superoxides | 1999 |
Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family.
Inhibitors of apoptosis and of excitotoxic cell death reduce brain damage after transient and permanent middle cerebral artery occlusion. We compared the neuroprotective effects of two caspase family inhibitors with the N-methyl-D-aspartate receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in a newly characterized cycloheximide-sensitive murine model of transient middle cerebral artery occlusion (30 minutes) in which apoptotic cell death is prominent. Ischemic infarction, undetected by 2,3,5-triphenyltetrazolium chloride staining at 24-hour reperfusion, featured prominently in the striatum at 72 hours and 7 days on hematoxylin-eosin-stained sections. Markers of apoptosis, such as oligonucleosomal DNA damage (laddering) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL)-positive cells first appeared at 24 hours and increased significantly at 72 hours and 7 days after reperfusion. The TUNEL-labeled cells were mostly neurons and stained negative for glial (GFAP, glial fibrillary acid protein) and leukocyte specific markers (CD-45). The caspase inhibitors, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.FMK; 120 ng intracerebroventricularly) or N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (z-DEVD.FMK; 480 ng intracerebroventricularly) decreased infarct size and neurologic deficits when administered 6 hours after reperfusion. The extent of protection was greater than in models of more prolonged ischemia or after permanent occlusion, and the therapeutic window was extended from 0 to 1 hours after 2-hour middle cerebral artery occlusion to at least 6 hours after brief ischemia. Also, z-VAD.FMK and z-DEVD.FMK treatment decreased oligonucleosomal DNA damage (DNA laddering) as assessed by quantitative autoradiography after gel electrophoresis. By contrast, MK-801 protected brain tissue only when given before ischemia (3 mg/kg intraperitoneally), but not at 3 or 6 hours after reperfusion. Despite a decrease in infarct size after MK-801 pretreatment, the amount of DNA laddering did not decrease 72 hours after reperfusion, thereby suggesting a mechanism distinct from inhibition of apoptosis. Hence, 30 minutes of reversible ischemia augments apoptotic cell death, which can be attenuated by delayed z-VAD.FMK and z-DEVD.FMK administration with preservation of neurologic function. By contrast, the therapeutic window for MK-801 does not extend beyond the time of occlusion, probably because its primary mecha Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Brain Ischemia; Caspase 1; Caspase 3; Caspases; Cell Death; Cerebral Infarction; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Injections, Intraventricular; Male; Mice; Neurons; Oligopeptides | 1998 |
Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death.
Cultured mouse cortical neurons undergo apoptosis when exposed to staurosporine. The cell-permeable caspase inhibitor Z-Val-Ala-Asp fluoromethylketone (Z-VAD.FMK) attenuated this death, without altering overall protein synthesis. Z-VAD.FMK also attenuated cortical neuronal apoptosis induced by removal of serum. However, Z-VAD.FMK did not attenuate the excitotoxic necrosis induced by 5-min exposure to 100 microM NMDA, 24-h exposure to 100 microM kainate, or 90-min exposure to oxygen-glucose deprivation. We have previously shown that blockade of the excitotoxic component of oxygen-glucose deprivation-induced neuronal death with glutamate antagonists unmasks an apoptotic death. Treatment with Z-VAD.FMK, but not the cathepsin-B protease inhibitor Z-Phe-Ala fluoromethylketone (Z-FA.FMK), also attenuated this oxygen-glucose deprivation-induced neuronal apoptosis. These data support the idea that brain caspases mediate the apoptotic component of oxygen-glucose deprivation-induced neuronal death and raise the possibility that combining caspase inhibitors with glutamate antagonists might attenuate brain damage induced by hypoxic-ischemic insults in vivo. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Brain Ischemia; Cell Death; Cells, Cultured; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Glucose; In Vitro Techniques; Mice; Neurons; Oxygen; Staurosporine | 1997 |