benzyloxycarbonyl-isoleucyl-glutamyl(o-tert-butyl)-alanyl-leucinal has been researched along with Colonic-Neoplasms* in 2 studies
2 other study(ies) available for benzyloxycarbonyl-isoleucyl-glutamyl(o-tert-butyl)-alanyl-leucinal and Colonic-Neoplasms
Article | Year |
---|---|
Increased local vascular endothelial growth factor expression associated with antitumor activity of proteasome inhibitor.
Inhibition of the proteasome, a multicatalytic proteinase complex, is an attractive approach to cancer therapy. Here we report that a selective inhibitor of the chymotrypsin-like activity of the proteasome, PSI (N-benzyloxycarbonyl-Ile-Glu(O-t-butyl)-Ala-leucinal) may inhibit growth of solid tumors not only through apoptosis induction, but also indirectly--through inhibition of angiogenesis. Two murine tumors: colon adenocarcinoma (C-26) and Lewis lung carcinoma (3LL) were chosen to study the antitumor effect of PSI. In an in vivo model of local tumor growth, PSI exerted significant antitumor effects against C-26 colon carcinoma, but not against 3LL lung carcinoma. Retardation of tumor growth was observed in mice treated with both 10 nmoles and 100 nmoles doses of PSI and in the latter group prolongation of the survival time of tumor-bearing mice was observed. PSI inhibited angiogenesis in the C-26 growing tumors with no such effect in 3LL tumors. Unexpectedly, that activity was associated with upregulation of vascular endothelial growth factor (VEGF) at the level of mRNA expression and protein production in C-26 tumors treated with PSI. C-26 cells treated with PSI produced increased amounts of VEGF in vitro in a dose- and time-dependent manner. We demonstrated that in C-26 colon adenocarcionoma higher VEGF production may render endothelial cells susceptible to the proapoptotic activity of PSI and is associated with inhibition of tumor growth. Topics: Adenocarcinoma; Animals; Carcinoma, Lewis Lung; Colonic Neoplasms; Mice; Oligopeptides; Proteasome Inhibitors; Vascular Endothelial Growth Factor A | 2004 |
Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells.
We investigated whether the histone deacetylase inhibitors m-carboxycinnamic acid bis-hydroxamide (CBHA) and a bicyclic depsipeptide, FK228, can enhance the anticancer effect of the proteasome inhibitors PSI and PS-341 in gastrointestinal carcinoma cells.. The anticancer effect of CBHA or FK228 and PSI or PS-341 was evaluated by cell death, caspase-3 activity, externalization of phosphatidylserine and DNA fragmentation, and colony formation assay. Expression of apoptosis-related molecules and cell cycle regulatory molecules, as well as phosphorylation of p38 were investigated by immunoblots. Generation of reactive oxygen species (ROS) was detected by intracellular oxidation of 5- (and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate.. CBHA or FK228 plus PSI or PS-341 synergistically induced apoptosis in human colonic DLD-1 and gastric MKN45 carcinoma cell lines. CBHA or FK228, but not 5-fluorouracil, plus PS-341 strongly decreased plating efficiency of DLD-1 cells. FK228 elicited ROS generation, and the free radical scavenger l-N-acetylcysteine inhibited the synergistic anticancer effect of combined therapy. In addition, l-N-acetylcysteine inhibited the combined therapy-mediated elevation of a proapoptotic BH3-only protein Bim expression, phosphorylation of H2AX, and accumulation of 8-hydroxydeoxyguanosine.. FK228 or CBHA and PSI or PS-341 synergistically induce apoptosis in DLD-1 and MKN45 cells depending on ROS-mediated signals. Our data suggest that a combination of FK228 or CBHA with PSI or PS-341 may be a valuable therapy against gastrointestinal adenocarcinoma cells. Topics: Adenocarcinoma; Annexin A5; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Boronic Acids; Bortezomib; Caspase 3; Caspases; Cell Line, Tumor; Cinnamates; Colonic Neoplasms; Depsipeptides; DNA Fragmentation; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Free Radicals; Gastrointestinal Neoplasms; Histones; Humans; Microscopy, Confocal; Oligopeptides; Oxygen; Phosphorylation; Proteasome Inhibitors; Pyrazines; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Time Factors | 2004 |