benzofurans and Pancreatitis

benzofurans has been researched along with Pancreatitis* in 2 studies

Other Studies

2 other study(ies) available for benzofurans and Pancreatitis

ArticleYear
Fraxinellone inhibits inflammatory cell infiltration during acute pancreatitis by suppressing inflammasome activation.
    International immunopharmacology, 2019, Volume: 69

    Inflammasomes promote the production of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18, which are the representative mediators of inflammation. Abnormal activation of inflammasomes leads to the development of inflammatory diseases such as acute pancreatitis (AP). In this study, we demonstrate the inhibitory effects of a new natural compound fraxinellone on inflammasome formation and examine the role of inflammasomes in a mouse model of AP. AP was induced with hourly intraperitoneal injections of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 μg/kg) for 6 h. Mice were sacrificed 6 h after the final cerulein injection. Blood and pancreas samples were obtained for further experiments. Intraperitoneal injection of fraxinellone significantly inhibited the pancreatic activation of multiple inflammasome molecules such as NACHT, LRR and PYD domains-containing protein 3 (NLRP3), PY-CARD, caspase-1, IL-18, and IL-1β during AP. In addition, fraxinellone treatment inhibited pancreatic injury, elevation in serum amylase and lipase activities, and infiltration of inflammatory cells such as neutrophils and macrophages but had no effect on pancreatic edema. To investigate whether inflammasome activation leads to the infiltration of inflammatory cells, we used parthenolide, a well-known natural inhibitor, and IL-1 receptor antagonist mice. The inhibition of inflammasome activation by pharmacological/or genetic modification restricted the infiltration of inflammatory cells, but not edema, consistent with the results observed with fraxinellone. Taken together, our study highlights fraxinellone as a natural inhibitor of inflammasomes and that inflammasome inhibition may lead to the suppression of inflammatory cells during AP.

    Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Benzofurans; Cell Movement; Ceruletide; Disease Models, Animal; Female; Humans; Inflammasomes; Inflammation; Macrophages; Male; Mice; Mice, Inbred C57BL; Neutrophils; Pancreatitis

2019
Lipid peroxidation inhibition reduces NF-kappaB activation and attenuates cerulein-induced pancreatitis.
    Free radical research, 2003, Volume: 37, Issue:4

    Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF-kappaB) activation and augmented tumor necrosis factor-alpha (TNF-alpha) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF-kappaB activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250g body weight received administration of cerulein (80 microg/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER + DMSO = 3.075 +/- 0.54 micromol/g; CER + raxofelast = 0.693 +/- 0.18 micromol/g; p < 0.001), decreased myeloperoxidase (MPO) activity (CER + DMSO = 22.2 +/- 3.54 mU/g; CER + raxofelast = 9.07 +/- 2.05 mU/g, p < 0.01), increased glutathione levels (GSH) (CER + DMSO = 5.21 +/- 1.79 micromol/g; CER + raxofelast = 15.71 +/- 2.14 micronol/g; p < 0.001), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase (CER + DMSO = 4063 +/- 707.9 U/l; CER + raxofelast = 1198 +/- 214.4 U/l; p < 0.001), and lipase (CER + DMSO = 1654 +/- 330 U/l; CER + raxofelast = 386 +/- 118.2 U/l; p < 0.001), Furthermore, raxofelast reduced pancreatic NF-kappaB activation and the TNF-alpha mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.

    Topics: Amylases; Animals; Benzofurans; Blotting, Western; Cell Nucleus; Ceruletide; Cytoplasm; Dimerization; Glutathione; I-kappa B Proteins; Lipase; Lipid Peroxidation; Male; NF-kappa B; NF-KappaB Inhibitor alpha; Pancreas; Pancreatitis; Peroxidase; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Tumor Necrosis Factor-alpha; Vitamin E

2003