benzofurans has been researched along with Neurodegenerative-Diseases* in 11 studies
4 review(s) available for benzofurans and Neurodegenerative-Diseases
Article | Year |
---|---|
Circadian Rhythm Sleep-Wake Disorders: a Contemporary Review of Neurobiology, Treatment, and Dysregulation in Neurodegenerative Disease.
Circadian rhythms oscillate throughout a 24-h period and impact many physiological processes and aspects of daily life, including feeding behaviors, regulation of the sleep-wake cycle, and metabolic homeostasis. Misalignment between the endogenous biological clock and exogenous light-dark cycle can cause significant distress and dysfunction, and treatment aims for resynchronization with the external clock and environment. This article begins with a brief historical context of progress in the understanding of circadian rhythms, and then provides an overview of circadian neurobiology and the endogenous molecular clock. Various tools used in the diagnosis of circadian rhythm sleep-wake disorders, including sleep diaries and actigraphy monitoring, are then discussed, as are the therapeutic applications of strategically timed light therapy, melatonin, and other behavioral and pharmacological therapies including the melatonin agonist tasimelteon. Management strategies towards each major human circadian sleep-wake rhythm disorder, as outlined in the current International Classification of Sleep Disorders - Third Edition, including jet lag and shift work disorders, delayed and advanced sleep-wake phase rhythm disorders, non-24-h sleep-wake rhythm disorder, and irregular sleep-wake rhythm disorder are summarized. Last, an overview of chronotherapies and the circadian dysregulation of neurodegenerative diseases is reviewed. Topics: Benzofurans; Chronobiology Disorders; Circadian Rhythm; Cyclopropanes; Humans; Neurodegenerative Diseases | 2021 |
Current Progress of Research on Neurodegenerative Diseases of Salvianolic Acid B.
Topics: Benzofurans; Drugs, Chinese Herbal; Humans; Neurodegenerative Diseases | 2019 |
From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives.
Discovering effective agents to slow or stop neurodegeneration is a challenging task. Over decades, only a few drugs were approved by Food and Drug Administration (FDA) and most ended in failure. The lessons learned have switched the strategy of drug discovery from designing highly selective ligands to a network pharmacology approach. This enables many natural products like butylphthalide (NBP) once again to be regarded as a valuable source of leads for drug discovery. In this review, we first start with the neuroprotective effects of NBPs on acute ischemic stroke, and later spread to their applications in major neurodegenerative diseases. The underlying mechanisms are also discussed in order to provide a direction for further study. Hopefully, this review could bring some new insights for drug development in this struggling field. Topics: Animals; Benzofurans; Humans; Neurodegenerative Diseases; Neuroprotective Agents; Stroke | 2018 |
Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders.
Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions. Topics: Acetamides; Animals; Benzofurans; Clinical Trials as Topic; Cyclopropanes; Humans; Hypnotics and Sedatives; Indenes; Melatonin; Neurodegenerative Diseases; Receptors, Melatonin; Sleep Wake Disorders | 2014 |
7 other study(ies) available for benzofurans and Neurodegenerative-Diseases
Article | Year |
---|---|
Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases.
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated Topics: Benzofurans; Benzylidene Compounds; Biological Products; Dose-Response Relationship, Drug; Down-Regulation; Drug Discovery; Humans; Inflammation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neurodegenerative Diseases; Structure-Activity Relationship | 2022 |
CaMKIIα Signaling Is Required for the Neuroprotective Effects of Dl-3-n-Butylphthalide in Alzheimer's Disease.
Topics: Alzheimer Disease; Benzofurans; Humans; Neurodegenerative Diseases; Neuroprotective Agents | 2022 |
Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Topics: Animals; Anti-Inflammatory Agents; Benzofurans; Cell Line, Tumor; Chlorophyta; Cytokines; DNA Fragmentation; Humans; Lactones; Macrophages; Membrane Potential, Mitochondrial; Mice; Molecular Structure; Monoterpenes; Neurodegenerative Diseases; Neuroprotective Agents; NF-kappa B; Nitric Oxide; RAW 264.7 Cells; Reactive Oxygen Species | 2021 |
Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice.
This in vivo study assessed the potential of the imidazoline receptor (IR) ligands moxonidine (selective I1-IR), BU224 (selective I2-IR) and LSL61122 (mixed I1/I2-IR) to dampen excitotoxic signalling induced by kainic acid (KA; 45 mg/kg) in the mouse brain (hippocampus and cerebral cortex). KA triggered a strong behavioural syndrome (seizures; maximal at 60-90 minutes) and sustained stimulation (at 72 hours with otherwise normal mouse behaviour) of pro-apoptotic c-Jun-N-terminal kinases (JNK) and calpain with increased cleavage of p35 into neurotoxic p25 (cyclin-dependent kinase 5 [Cdk5] activators) in mouse hippocampus. Pretreatment (five days) with LSL61122 (10 mg/kg), but not moxonidine (1 mg/kg) or BU224 (20 mg/kg), attenuated the KA-induced behavioural syndrome, and all three IR ligands inhibited JNK and calpain activation, as well as p35/p25 cleavage after KA in the hippocampus (effects also observed after acute IR drug treatments). Efaroxan (I1-IR, 10 mg/kg) and idazoxan (I2-IR, 10 mg/kg), postulated IR antagonists, did not antagonise the effects of moxonidine and LSL61122 on KA targets (these IR ligands showed agonistic properties inhibiting pro-apoptotic JNK). Brain subcellular preparations revealed reduced synaptosomal postsynaptic density-95 protein contents (a mediator of JNK activation) and indicated increased p35/Cdk5 complexes (with pro-survival functions) after treatment with moxonidine, BU224 and LSL61122. These results showed that I1- and I2-IR ligands (moxonidine and BU224), and especially the mixed I1/I2-IR ligand LSL61122, are partly neuroprotective against KA-induced excitotoxic signalling. These findings suggest a therapeutic potential of IR drugs in disorders associated with glutamate-mediated neurodegeneration. Topics: Animals; Benzofurans; Cerebral Cortex; Cyclin-Dependent Kinase 5; Glutamic Acid; Hippocampus; Idazoxan; Imidazoles; Imidazoline Receptors; Kainic Acid; Ligands; Male; Mice; Neurodegenerative Diseases; Neuroprotective Agents; Styrenes; Time Factors | 2016 |
Histamine H3 receptor antagonism by ABT-239 attenuates kainic acid induced excitotoxicity in mice.
The multifaceted pathogenesis of temporal lobe epilepsy (TLE) offers a number of adjunctive therapeutic prospects. One such therapeutic strategy could be targeting H3 receptor (H3R) by selective H3R antagonists which are perceived to have antiepileptic and neuroprotective potential. Kainic acid (KA) induced seizure, a reliable model of TLE, triggers epileptogenic events resulting from initial neuronal death and ensuing recurring seizures. The present study aimed to determine whether pre-treatment with ABT-239, a novel H3R antagonist, and its combinations with sodium valproate (SVP) and TDZD-8 (glycogen synthase kinase-3β (GSK3β) inhibitor) can prevent the excitotoxic events in mice exposed to KA (10 mg/kg i.p.). ABT-239 (1 and 3 mg/kg i.p.) significantly attenuated KA-mediated behavioural and excitotoxic anomalies and restored altered expression of Bax, cleaved caspase-3, phospho-Akt (Ser473) and cAMP response element binding protein (CREB). Surprisingly, restoration of Bcl2 and phospho-GSK3β (Ser9) by ABT-239 did not reach the level of statistical significance. Co-administration of ABT-239 (1 and 3 mg/kg) with a sub-effective dose of SVP (150 mg/kg i.p.) yielded improved efficacy than when given alone. Similarly, low and high dose combinations of ABT-239 (1 and 3 mg/kg) with TDZD-8 (5 and 10 mg/kg i.p.) produced greater neuroprotection than any other treatment group. Our findings suggests a neuroprotective potential of ABT-239 and its combinations with SVP and TDZD-8 against KA-induced neurotoxicity, possibly mediated through in part each by modulating Akt/GSK3β and CREB pathways. The use of H3R antagonists as adjuvant in the treatment of human TLE might find potential utility, and can be pursued further. Topics: Animals; Anticonvulsants; Benzofurans; Dose-Response Relationship, Drug; Drug Therapy, Combination; Gene Expression; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hippocampus; Histamine H3 Antagonists; Kainic Acid; Male; Mice; Neurodegenerative Diseases; Neurons; Neuroprotective Agents; Protein Kinase Inhibitors; Pyrrolidines; Random Allocation; Seizures; Thiadiazoles; Valproic Acid | 2014 |
Potential usefulness of D2R reporter gene imaging by IBF as gene therapy monitoring for cerebellar neurodegenerative diseases.
We investigated a gene expression imaging method to examine the level of therapeutic gene expression in the cerebellum. Using a human immunodeficiency virus derived lentivial vector, we expressed the dopamine D(2) receptor (D(2)R) as a reporter protein to mouse cerebellar Purkinje cells. Biodistribution and ex vivo autoradiography studies were performed by giving [(125)I]5-iodo-7-N-[(1-ethyl-2-pyrrolidinyl)methyl]carboxamide-2,3-dihydrobenzofuran ([(125)I]IBF) (1.85 MBq), as a radioactive D(2)R ligand, to model mice expressing the D(2)R with an HA tag (HA-D(2)R) in the cerebellum. In this study, [(125)I]IBF was bound to the D(2)R expressed in the cerebellum of the model mice selectively. Immunostaining was performed to confirm the HA-D(2)R expression in the cerebellum of the model mice. A significant correlation (r=0.900, P<0.001) between areas that expressed HA-D(2)R by immunostaining and areas in which [(125)I]IBF accumulated by the ex vivo autoradiograms was found. These results indicated that radioiodinated IBF is useful as a reporter probe to detect D(2)R reporter gene expression, which can be used for monitoring therapeutic gene expression in the cerebellum. Topics: Animals; Benzofurans; Cerebellar Diseases; Gene Expression Regulation; Genes, Reporter; Genetic Therapy; Genetic Vectors; Lentivirus; Mice; Mice, Inbred C57BL; Neurodegenerative Diseases; Organic Chemicals; Pyrrolidines; Receptors, Dopamine D2 | 2009 |
The design and synthesis of human branched-chain amino acid aminotransferase inhibitors for treatment of neurodegenerative diseases.
The inhibition of the cytosolic isoenzyme BCAT that is expressed specifically in neuronal tissue is likely to be useful for the treatment of neurodegenerative and other neurological disorders where glutamatergic mechanisms are implicated. Compound 2 exhibited an IC50 of 0.8 microM in the hBCATc assays; it is an active and selective inhibitor. Inhibitor 2 also blocked calcium influx into neuronal cells following inhibition of glutamate uptake, and demonstrated neuroprotective efficacy in vivo. SAR, pharmacology, and the crystal structure of hBCATc with inhibitor 2 are described. Topics: Animals; Benzofurans; Calcium; Cells, Cultured; Crystallography, X-Ray; Drug Design; Drug Evaluation, Preclinical; Enzyme Inhibitors; Glutamic Acid; Humans; In Vitro Techniques; Models, Molecular; Molecular Structure; Neurodegenerative Diseases; Neurons; Rats; Rats, Inbred Lew; Stereoisomerism; Structure-Activity Relationship; Sulfonamides; Transaminases | 2006 |