benzofurans and Ischemia

benzofurans has been researched along with Ischemia* in 13 studies

Other Studies

13 other study(ies) available for benzofurans and Ischemia

ArticleYear
    Neurochemical research, 2022, Volume: 47, Issue:10

    Topics: Animals; Benzofurans; Chemical and Drug Induced Liver Injury; Ischemia; Ischemic Stroke; Magnetic Resonance Spectroscopy; Neuroprotective Agents; Rats; Stroke

2022
PORIMIN: The key to (+)-Usnic acid-induced liver toxicity and oncotic cell death in normal human L02 liver cells.
    Journal of ethnopharmacology, 2021, Apr-24, Volume: 270

    Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes.. This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection.. Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied.. The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells.. In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.

    Topics: Animals; Anti-Infective Agents; Benzofurans; Caspase Inhibitors; Caspases; Cell Death; Cell Line; Cell Survival; Chemical and Drug Induced Liver Injury; Gene Knockdown Techniques; Glutathione; Hepatocytes; Humans; Intracellular Signaling Peptides and Proteins; Ischemia; JNK Mitogen-Activated Protein Kinases; Liver; Mice, Inbred ICR; Necrosis; Oxidative Stress; Phosphate-Binding Proteins; Receptors, Cell Surface

2021
Effect of butylphthalide on new cerebral microbleeds in patients with acute ischemic stroke.
    Medicine, 2020, Aug-07, Volume: 99, Issue:32

    To evaluate the effect of dl-3-N-butylphthalide (NBP) on new cerebral microbleeds (CMBs) in patients with acute ischemic stroke (AIS).. We will prospectively enroll patients with AIS admitted to the stroke center of Jingjiang People's Hospital. Qualified participants will be randomly assigned to either the NBP group (NBP injection) or the control group (NBP injection placebo) in a ratio of 1:1. Patients will complete the brain magnetic resonance imaging within 48 hours and 14 days after stroke onset to observe the CMBs through susceptibility weighted imaging, and evaluate whether the use of NBP will affect the new CMBs in AIS patients. SPSS 20.0 will be used for statistical analyses.. We will provide practical and targeted results assessing the safety of NBP for AIS patients, to provide reference for clinical use of NBP.. The stronger evidence about the effect of NBP on new CMBs in AIS patients will be provided for clinicians.

    Topics: Benzofurans; Cerebral Hemorrhage; Clinical Protocols; Humans; Ischemia; Magnetic Resonance Imaging; Platelet Aggregation Inhibitors; Prospective Studies; Stroke

2020
Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome.
    Molecular medicine reports, 2020, Volume: 22, Issue:6

    Ischemic heart disease is a major cause of mortality and disability worldwide. Salvianolic acid B (Sal B) is one of the main water‑soluble components of Salvia miltiorrhiza Bge. Numerous studies have demonstrated that Sal B could exert significant anti‑inflammatory and cardiovascular protective effects; however, the underlying mechanisms remain unclear. To elucidate the association between myocardial ischemia and inflammation, and to develop effective protective drugs, a rat model of myocardial ischemia was induced using isoproterenol (ISO) and an inflammation model in H9C2 cells was induced with lipopolysaccharide + adenosine triphosphate. Both of these models were treated with different concentrations of Sal B (5, 10 and 15 mg/kg in vivo; 1, 5 and 25 µM in vitro). In vivo, the serum levels of creatine kinase isoenzyme MB, glutamic oxaloacetic transaminase and IL‑1β, the cardiac function and the mRNA expression levels of NLR family pyrin domain‑containing 3 (NLRP3) inflammasome components were evaluated using ELISAs, an electrocardiogram, hematoxylin and eosin staining and reverse transcription‑quantitative PCR, respectively. The results demonstrated that treatment with Sal B markedly alleviated the acute myocardial ischemic injury induced by hypodermic injection of ISO in rats. In vitro, the results of reactive oxygen species (ROS) detection, JC‑1 staining, western blotting and TUNEL assays showed that Sal B treatment significantly inhibited intracellular ROS production, increased the mitochondrial membrane potential, regulated the expression of mitophagy‑related proteins, inhibited the activation of the NLRP3 inflammasome and inhibited apoptosis in H9C2 cells. In conclusion, these findings indicated that Sal B exerted protective effects against myocardial ischemic injury by promoting mitophagy and maintaining mitochondrial function.

    Topics: Animals; Apoptosis; Benzofurans; Cell Line; China; Disease Models, Animal; Inflammasomes; Inflammation; Ischemia; Lipopolysaccharides; Male; Mitophagy; Myocardial Ischemia; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Toll-Like Receptor 4

2020
SALVIANOLIC ACID B ALLEVIATING MYOCARDIUM INJURY IN ISCHEMIA REPERFUSION RATS.
    African journal of traditional, complementary, and alternative medicines : AJTCAM, 2016, Volume: 13, Issue:4

    Salvia miltiorrhiza (SM) Bunge is one of the widely-used Chinese medicinal herbs. Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects.. To study the cardioprotective effects of salvianolic acid B (Sal B) on acute myocardial ischemia reperfusion (MIR) injury rats, on the basis of this investigation, the possible mechanism of salvianolic acid B was elucidated. Male Sprague- Dawley rats (200-220 g) were randomly divided into five groups: sham-operated, MIR, MIR + Sal B (10 mg/kg/day, orally), MIR + Sal B (20 mg/kg/ day, orally) and MIR + Sal B (30 mg/kg/ day, orally). Before operation, the foregoing groups were pretreated with homologous drug once a day for 7 days, respectively. After twelve hours in MIR, the cardioprotective effects of SPJ were evaluated by infarct size, biochemical values, and the antioxidative and antiapoptotic relative gene expressions.. Sal B significantly improved heart function and decreased infarct size; remarkably decreased levels of serum TNF-α and IL-Ιβ levels, increased contents of myocardium antioxidant enzymes activities; western blot results showed that Sal B ameliorate the increased Bax and caspase-3 protins expressions and decreased Bcl-2 proteins expression and ratios of Bcl-2 to Bax.. In ischemic myocardium, oxidative stress caused the overgeneration and accumulation of reactive oxygen species (ROS), which was central of cardiac ischemic injury. Sal B exerted beneficially cardioprotective effects on myocardial ischemia injury rats, mainly scavenging oxidative stress-triggered overgeneration and accumulation of ROS, alleviating myocardial ischemia injury and cardiac cell death. List of abbreviations: salvianolic acid B (Sal B); myocardial ischemia reperfusion (MIR); reactive oxygen species (ROS); Left ventricular end-diastolic pressure (LVEDP); left ventricular end-diastolic volume (LVEDV); Malondialdehyde (MDA); superoxide dismutase (SOD); catalase (CAT); Glutathione peroxidase (GSH-Px); glutathione reductase (GR).

    Topics: Animals; bcl-2-Associated X Protein; Benzofurans; Humans; Interleukin-1beta; Ischemia; Male; Myocardial Reperfusion Injury; Myocardium; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Salvia; Tumor Necrosis Factor-alpha

2016
Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats.
    The European journal of neuroscience, 2016, Volume: 44, Issue:12

    Complex regional pain syndrome type 1 (CRPS-I) remains one of the most clinically challenging neuropathic pain syndromes and its mechanism has not been fully characterized. Cannabinoid receptor 2 (CB2) has emerged as a promising target for treating different neuropathic pain syndromes. In neuropathic pain models, activated microglia expressing CB2 receptors are seen in the spinal cord. Chemokine fractalkine receptor (CX3CR1) plays a substantial role in microglial activation and neuroinflammation. We hypothesized that a CB2 agonist could modulate neuroinflammation and neuropathic pain in an ischemia model of CRPS by regulating CB2 and CX3CR1 signaling. We used chronic post-ischemia pain (CPIP) as a model of CRPS-I. Rats in the CPIP group exhibited significant hyperemia and edema of the ischemic hindpaw and spontaneous pain behaviors (hindpaw shaking and licking). Intraperitoneal administration of MDA7 (a selective CB2 agonist) attenuated mechanical allodynia induced by CPIP. MDA7 treatment was found to interfere with early events in the CRPS-I neuroinflammatory response by suppressing peripheral edema, spinal microglial activation and expression of CX3CR1 and CB2 receptors on the microglia in the spinal cord. MDA7 also mitigated the loss of intraepidermal nerve fibers induced by CPIP. Neuroprotective effects of MDA7 were blocked by a CB2 antagonist, AM630. Our findings suggest that MDA7, a novel CB2 agonist, may offer an innovative therapeutic approach for treating neuropathic symptoms and neuroinflammatory responses induced by CRPS-I in the setting of ischemia and reperfusion injury.

    Topics: Animals; Benzofurans; CX3C Chemokine Receptor 1; Disease Models, Animal; Encephalitis; Epidermis; Hyperalgesia; Ischemia; Male; Microglia; Pain; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Receptors, Chemokine; Reflex Sympathetic Dystrophy; Spinal Cord Dorsal Horn

2016
Simultaneous measurement of cytosolic and mitochondrial Ca(2+) during ischemia in mice whole-brain slice preparation and its application to drug evaluation.
    Acta neurochirurgica. Supplement, 2013, Volume: 118

    We developed a conventional imaging method to measure Ca(2+) concentration in cytosol (using FuraRed as an indicator) and mitochondria (using Rhod-2 as an indicator), simultaneously, by alternative excitation with specific wave length. After confirming the availability of the method in Hela cells, we applied it to mouse whole-brain slice -preparation, which was exposed to oxygen- and glucose-deprived artificial cerebrospinal fluid (ischemic ACSF) for 12 min. The fluorescence (>570 nm) at the cerebral cortex and hippocampus due to FuraRed (excited by 480 ± 10 nm) decreased (indicating the increase in cytosolic Ca(2+)-concentration), while the fluorescence due to Rhod-2 (excited by 560 ± 10 nm) increased (indicating the increase in mitochondrial Ca(2+) concentration) during exposure to ischemic conditions. We found the characteristic protective effects of cyclosporine A (10(-6) M), a known blocker for mitochondrial permeability transition, and SEA0400 (10(-6) M), a blocker for Na(+)/Ca(2+) exchanger, on the abnormal Ca(2+) increase in cytosol. We confirmed that the present method will be useful for future pathological and pharmacological studies on ischemia-induced brain damage.

    Topics: Aniline Compounds; Animals; Benzofurans; Calcium; Cytosol; Disease Models, Animal; Drug Evaluation, Preclinical; HeLa Cells; Heterocyclic Compounds, 3-Ring; Humans; Imidazoles; In Vitro Techniques; Ischemia; Mice; Mice, Inbred C57BL; Mitochondria; Neurons; Phenyl Ethers; Sodium-Calcium Exchanger; Time Factors

2013
[The effect of butylphthalide on expression of NGF and BDNF in ischemia stroke tissue of rat cerebrum].
    Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition, 2007, Volume: 38, Issue:3

    To study the expressions of BDNF, BDNF mRNA, NGF and NGF mRNA in the permanent focal cerebral ischemia tissues of rats. METHHODS: Healthy male Sprague-Dawley rats were taken for this study project. According to the procedure of Zea-Longa, the rat model with permanent cerebral ischemia was established by rat middle cerebral artery obstructed (MCAO) with a nylon thread, and the model rats of neurobehavioral evaluation as 1-3 grade were randomly divided into two groups: butylphthalide group (A group) and control group (B group). A group was given with 25 mg/kg butylphthalide, B group was given with edible oil, two times every day. 3 days after occlusion, all rats were sacrificed after evaluated the neurobehavioral scores, and the samples of cerebrum were obtained after in situ perfusion and fixation with 40 g/L paraformaldehyde. 5 rats in each group were taken to tetrazolium chloride (TTC) staining for macroscopic observation of cerebral infarction area, the rest samples were processed by immunohistochemistry to evaluate effects of butylphthalide on BDNF and NGF expression, hybridization in situ to evaluate effects of butylphthalide on BDNF mRNA and NGF mRNA expression. SPSS12. 0 for statistical analysis, it was P<0. 05 as having statistical significance.. Comparing to control group (B group), butylphthalide group (A group) did not have significantly pathological difference, but the grade of behavior and infarction area were apparently reduced (P<0. 05). In butylphthalide group, there was a significant expression up-regulation to BDNF, NGF, BDNF mRNA and NGF mRNA in the peripheral around infarction and cornu ammonis or hippocampus area (P<0. 05). However in the infarction area, the expressions of BDNF, NGF, BDNF mRNA and NGF mRNA had no significantly statistical difference (P> 0. 05).. Comparing to control group, butylphthalide can significantly up-regulate the expressions of BDNF and NGF in genetic transcription level, and protect from the ischemia injury.

    Topics: Animals; Benzofurans; Brain-Derived Neurotrophic Factor; Cerebrum; Gene Expression Regulation; Ischemia; Male; Nerve Growth Factor; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stroke

2007
Raxofelast, a hydrophilic vitamin E-like antioxidant, reduces testicular ischemia-reperfusion injury.
    Urological research, 2004, Volume: 32, Issue:5

    Testis torsion is a surgical emergency that lead to permanent gonad damage. The damage has been ascribed to mechanisms of ischemia-reperfusion similar to other tissues. The mechanisms involved are different, but the lipid peroxidation of plasma membrane, caused by reactive oxygen species (ROS), generated particularly during reperfusion, is one of the most accredited. In the present study, we aimed to evaluate the effects of raxofelast, a vitamin E-like antioxidant with potent action and no systemic toxicity, on lipid peroxidation and histopathology in both testes after unilateral testicular torsion and detorsion. Adult male Wistar rats were subjected to total occlusion (3 h) of the left testis followed by 4 hours of reperfusion (TI/R). Sham testicular ischemia-reperfusion rats (SHAM TI/R) were used as controls. The animals were then randomized to receive either vehicle (1 ml/kg/i.p. of a dimetylsulphoxide/NaCl 0.9% 1:10 v/v solution, injected either 15 min before detorsion and 15 min after detorsion) or raxofelast (20 mg/kg i.p. 15 min before detorsion and 15 min after detorsion). Conjugated dienes (CD) levels, an index of lipid peroxidation, and testis histopathology were evaluated. Testicular ischemia reperfusion (TI/R) in untreated rats produced high testicular levels of CD (3.6+/-0.3 DeltaABS/g protein on the left side and 2.5+/-0.2 DeltaABS/g protein on the right side). Furthermore, histological examination revealed marked damage to the testis interstitium with severe haemorrhage and edema. The administration of raxofelast lowered CD levels (2.8+/-0.2 DeltaABS/g protein on the left side and 1.9+/-0.1 DeltaABS/g protein in the right side) and significantly reduced histological damage. These data suggest that the hydrophilic vitamin E-like antioxidants are good candidates for designing a novel therapeutic strategy to halt the oxidative stress that follows acute testis torsion.

    Topics: Animals; Antioxidants; Benzofurans; Ischemia; Lipid Peroxidation; Male; Rats; Rats, Wistar; Reperfusion Injury; Spermatic Cord Torsion; Testis; Vitamin E

2004
Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1998, May-15, Volume: 18, Issue:10

    A steep inwardly directed Na+ gradient is essential for glial functions such as glutamate reuptake and regulation of intracellular ion concentrations. We investigated the effects of glucose deprivation, chemical hypoxia, and simulated ischemia on intracellular Na+ concentration ([Na+]i) in cultured spinal cord astrocytes using fluorescence ratio imaging with sodium-binding benzofuran isophthalate (SBFI) AM. Glucose removal or chemical hypoxia (induced by 10 mM NaN3) for 60 min increased [Na+]i from a baseline of 8.3 to 11 mM. Combined glycolytic and respiratory blockage by NaN3 and 0 glucose saline caused [Na+]i to increase by 20 mM, similar to the [Na+]i increases elicited by blocking the Na+/K+-ATPase with ouabain. Recovery from large [Na+]i increases (>15 mM) induced by the glutamatergic agonist kainate was attenuated during glucose deprivation or NaN3 application and was blocked in NaN3 and 0 glucose. To mimic in vivo ischemia, we exposed astrocytes to NaN3 and 0 glucose saline containing L-lactate and glutamate with increased [K+] and decreased [Na+], [Ca2+], and pH. This induced an [Na+]i decrease followed by an [Na+]i rise and a further [Na+]i increase after reperfusion with standard saline. Similar multiphasic [Na+]i changes were observed after NaN3 and 0 glucose saline with only reduced [Na+]e. Our results suggest that the ability to maintain a low [Na+]i enables spinal cord astrocytes to continue uptake of K+ and/or glutamate at the onset of energy failure. With prolonged energy failure, however, astrocytic [Na+]i rises; with loss of their steep transmembrane Na+ gradient, astrocytes may aggravate metabolic insults by carrier reversal and release of acid, K+, and/or glutamate into the extracellular space.

    Topics: Animals; Animals, Newborn; Antimetabolites; Astrocytes; Benzofurans; Cell Hypoxia; Deoxyglucose; Energy Metabolism; Enzyme Inhibitors; Ethers, Cyclic; Excitatory Amino Acid Agonists; Fluorescent Dyes; Fluorides, Topical; Glucose; Glycolysis; Homeostasis; Ischemia; Kainic Acid; Neurotoxins; Ouabain; Rats; Rats, Sprague-Dawley; Sodium; Sodium Azide; Sodium Fluoride; Sodium-Potassium-Exchanging ATPase; Spinal Cord; Tetrodotoxin

1998
Dependence of hypoxic cellular calcium loading on Na(+)-Ca2+ exchange.
    Circulation research, 1992, Volume: 71, Issue:3

    Na(+)-Ca2+ exchange has been shown to contribute to reperfusion- and reoxygenation-induced cellular Ca2+ loading and damage in the heart. Despite the fact that both [Na+]i and [Ca2+]i have been documented to rise during ischemia and hypoxia, it remains unclear whether the rise in [Ca2+]i occurring during hypoxia is linked to the rise in [Na+]i via Na(+)-Ca2+ exchange before reoxygenation and how this relates to cellular injury. Single electrically stimulated (0.2 Hz) adult rat cardiac myocytes loaded with Na(+)-sensitive benzofuran isophthalate (SBFI), the new fluorescent probe, were exposed to glucose-free hypoxia (PO2 less than 0.02 mm Hg), and SBFI fluorescence was monitored to index changes in [Na+]i. Parallel experiments were performed with indo-1-loaded cells to index [Ca2+]i. The SBFI fluorescence ratio (excitation, 350/380 nm) rose significantly during hypoxia after the onset of ATP-depletion contracture, consistent with a rise in [Na+]i. At reoxygenation, the ratio fell rapidly toward baseline levels. The indo-1 fluorescence ratio (emission, 410/490 nm) also rose only after the onset of rigor contracture and then often showed a secondary rise early after reoxygenation at a time when [Na+]i fell. The increase in both [Na+]i and [Ca2+]i, seen during hypoxia, could be markedly reduced by performing experiments in Na(+)-free buffer. These experiments suggested that hypoxic Ca2+ loading is linked to a rise in Na+i via Na(+)-Ca2+ exchange. To show that Na(+)-Ca2+ exchange activity was not fully inhibited by profound intracellular ATP depletion, cells were exposed to cyanide, and then buffer Na+ was abruptly removed after contracture occurred. The sudden removal of buffer Na+ would be expected to stimulate cell Ca2+ entry via Na(+)-Ca2+ exchange. A large rapid rise in the indo-1 fluorescence ratio ensued, which was consistent with abrupt cell Ca2+ loading via the exchanger. The effect of reducing hypoxic buffer [Na+] on cell morphology after reoxygenation was examined. Ninety-five percent of cells studied in a normal Na(+)-containing buffer (144 mM NaCl, n = 38) and reoxygenated 30 minutes after the onset of hypoxic rigor underwent hypercontracture. Only 12% of cells studied in Na(+)-free buffer (144 mM choline chloride, n = 17) hypercontracted at reoxygenation (p less than 0.05). Myocytes were also exposed to hypoxia in the presence of R 56865, a compound that blocks noninactivating components of the Na+ current. R 56865 blunted the rise in [Na+]i typi

    Topics: Animals; Benzofurans; Benzothiazoles; Calcium; Cell Hypoxia; Ethers, Cyclic; Hydrogen-Ion Concentration; Indoles; Ischemia; Myocardium; Piperidines; Rats; Sodium; Sodium Channels; Sodium-Potassium-Exchanging ATPase; Thiazoles

1992
A high plasma prostaglandin to thromboxane ratio protects against renal ischemia.
    Surgery, gynecology & obstetrics, 1987, Volume: 165, Issue:5

    Pretreatment with the thromboxane synthase inhibitor OKY-046 but not the cyclo-oxygenase inhibitor ibuprofen protects against ischemia-induced acute tubular necrosis. However, ibuprofen together with the vasodilating agent prostaglandin E1 is protective. This suggests that a high prostaglandin to thromboxane ratio is the major factor operative in preventing tubular necrosis, the subject of this study. Rats that had unilateral nephrectomy (n = 60) with the exception of rats that had sham operations (n = 8) underwent 45 minutes of left renal pedicle clamping. Thirty minutes before the operation, the rats received either a saline solution or a thromboxane synthase inhibitor that was given intravenously. The inhibitors OKY-046 (2 milligrams per kilogram, n = 10), UK38485 (1 milligram per kilogram, n = 9) and U63357A (10 milligrams per kilogram, n = 10) were given as a single bolus while the inhibitor CGS13080 (0.1 milligram per kilogram, n = 9, and 1.0 milligram per kilogram, n = 7) was given by constant infusion and continued for 60 minutes after reperfusion. With saline solution therapy, five minutes after reperfusion, thromboxane B2 increased from 154 to 2,537 picograms per milliliter (p less than 0.00001) and 6-keto-prostaglandin F1 alpha increased from 51 to 266 picograms per milliliter (p less than 0.004). At 24 hours, the creatinine level increased from 0.5 to 2.8 milligrams per deciliter (p less than 0.00001). Only OKY-046 yielded a creatinine level at 24 hours of 1.2 milligrams per deciliter, a value lower than that for those in the saline solution control group (p less than 0.002). Furthermore, OKY-046 led to the highest prostaglandin to thromboxane ratio (p less than 0.035). The five other ratios which occurred after drug therapy were inversely related to the decrease in the creatinine value (r = -0.93, p less than 0.02). Histologically, OKY-046 was the only thromboxane synthase inhibitor to prevent acute tubular necrosis (p less than 0.05). Results show that a high prostaglandin to thromboxane ratio protects against acute tubular necrosis.

    Topics: 6-Ketoprostaglandin F1 alpha; Animals; Benzofurans; Creatinine; Evaluation Studies as Topic; Ibuprofen; Imidazoles; Ischemia; Kidney; Kidney Tubular Necrosis, Acute; Male; Methacrylates; Pyridines; Rats; Thromboxane B2; Thromboxane-A Synthase

1987
A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia.
    Journal of neurosurgery, 1986, Volume: 64, Issue:6

    A pharmacological analysis was carried out to determine the possible role of aberrant calcium fluxes, vasoactive arachidonic acid metabolites, and microvascular lipid peroxidation in the development of posttraumatic spinal cord white matter ischemia. Pentobarbital-anesthetized cats were treated intravenously 30 minutes before a 500-gm-cm contusion injury to the lumbar spinal cord with one of the following test drugs: the Ca++ channel antagonists verapamil, diltiazem, or nifedipine; the cyclo-oxygenase inhibitors ibuprofen or meclofenamate; the thromboxane A2 (TXA2) synthetase inhibitor furegrelate sodium; or the stable epoprostenol (prostacyclin, or PGI2) analogue ciprostene calcium alone or in combination with furegrelate sodium. Another group of animals was pretreated for 5 days before spinal injury with a combination of the antioxidants vitamin E and selenium in high doses. The hydrogen clearance technique was used to make repeated measurements of spinal cord blood flow (SCBF) in the dorsolateral funiculus of the injured segment before and for 4 hours after injury. In 11 untreated uninjured cats, the mean preinjury SCBF was 12.7 +/- 1.5 ml/100 gm/min. Following contusion, there was a progressive decline in SCBF to 6.8 +/- 0.4 ml/100 gm/min, or 53.5% of the preinjury level at 4 hours. In comparison, the Ca++ antagonists diltiazem and nifedipine (but not verapamil) prevented a significant posttraumatic decrease in SCBF. Similarly, both cyclo-oxygenase inhibitors (ibuprofen and meclofenamate) maintained SCBF within normal limits (10 ml/100 gm/min or greater). However, neither TXA2 synthetase inhibition nor the stable PGI2 analogue alone had a significant effect in preventing ischemia, whereas a combination of the two agents did serve to support SCBF. The most impressive preservation of posttraumatic SCBF, however, was observed in the antioxidant-treated animals. Based upon these results, a hypothesis is presented concerning the pathogenesis of posttraumatic central nervous system ischemia which integrates an injury-induced rise in intracellular Ca++, the increased synthesis of vasoactive prostanoids (such as prostaglandin F2 alpha and TXA2), and progressive microvascular lipid peroxidation.

    Topics: Animals; Benzofurans; Calcium Channel Blockers; Cats; Cyclooxygenase Inhibitors; Diltiazem; Dinoprost; Epoprostenol; Female; Ibuprofen; Ischemia; Male; Meclofenamic Acid; Nifedipine; Prostaglandin Antagonists; Prostaglandins F; Spinal Cord; Thromboxane A2; Verapamil; Vitamin E

1986