benzofurans and Glucose-Intolerance
benzofurans has been researched along with Glucose-Intolerance* in 5 studies
Other Studies
5 other study(ies) available for benzofurans and Glucose-Intolerance
Article | Year |
---|---|
Atf3 induction is a therapeutic target for obesity and metabolic diseases.
Activating transcription factor 3 (Atf3) has been previously demonstrated to impact obesity and metabolism. However, a metabolic role of Atf3 in mice remains debatable. We investigated the role of Atf3 in mice and further investigated Atf3 expression as a therapeutic target for obesity and metabolic diseases. Atf3 knockout (KO) mice fed with a high fat diet (HFD) aggravated weight gain and impaired glucose metabolism compared to littermate control wild type (WT) mice. Atf3 KO aged mice fed with a chow diet (CD) for longer than 10 months also displayed increased body weight and fat mass compared to WT aged mice. We also assessed requirements of Atf3 in a phytochemical mediated anti-obese effect. Effect of sulfuretin, a previously known phytochemical Atf3 inducer, in counteracting weight gain and improving glucose tolerance was almost completely abolished in the absence of Atf3, indicating that Atf3 induction can be a molecular target for preventing obesity and metabolic diseases. We further identified other Atf3 small molecule inducers that exhibit inhibitory effects on lipid accumulation in adipocytes. These data highlight the role of Atf3 in obesity and further suggest the use of chemical Atf3 inducers for prevention of obesity and metabolic diseases. Topics: Activating Transcription Factor 3; Aging; Animals; Anti-Obesity Agents; Benzofurans; Body Weight; Diet, High-Fat; Flavonoids; Glucose Intolerance; Metabolic Diseases; Mice, Knockout; Molecular Targeted Therapy; Obesity | 2018 |
Salvianolic Acid B Ameliorates Hyperglycemia and Dyslipidemia in db/db Mice through the AMPK Pathway.
Salvianolic acid B (Sal B), a major polyphenolic compound of Salvia miltiorrhiza Bunge, has been shown to possess potential antidiabetic activities. However, the action mechanism of SalB in type 2 diabetes has not been investigated extensively. The present study was designed to investigate the effects of Sal B on diabetes-related metabolic changes in a spontaneous model of type 2 diabetes, as well as its potential molecular mechanism.. Male C57BL/KsJ-db/db mice were orally treated with Sal B (50 and 100 mg/kg) or metformin (positive drug, 300 mg/kg) for 6 weeks.. Both doses of Sal B significantly decreased fasting blood glucose, serum insulin, triglyceride and free fatty acid levels, reduced hepatic gluconeogenic gene expression and improved insulin intolerance in db/db mice. High dose Sal B also significantly improved glucose intolerance, increased hepatic glycolytic gene expression and muscle glycogen content, and ameliorated histopathological alterations of pancreas, similar to metformin. Sal B treatment resulted in increased phosphorylated AMP-activated protein kinase (p-AMPK) protein expression in skeletal muscle and liver, increased glucose transporter 4 (GLUT4) and glycogen synthase protein expressions in skeletal muscle, and increased peroxisome proliferator-activated receptor alpha (PPARα) and phosphorylated acetyl CoA carboxylase (p-ACC) protein expressions in liver.. Our data suggest that Sal B displays beneficial effects in the prevention and treatment of type 2 diabetes at least in part via modulation of the AMPK pathway. Topics: AMP-Activated Protein Kinases; Animals; Benzofurans; Body Weight; Dyslipidemias; Gene Expression Regulation; Gluconeogenesis; Glucose; Glucose Intolerance; Glucose Transporter Type 4; Glycogen; Glycogen Synthase; Glycolysis; Hyperglycemia; Hyperinsulinism; Lipids; Liver; Male; Mice, Inbred C57BL; Muscle, Skeletal; Pancreas; Phosphorylation; PPAR alpha; RNA, Messenger; Signal Transduction | 2016 |
Anti-α-glucosidase and Anti-dipeptidyl Peptidase-IV Activities of Extracts and Purified Compounds from Vitis thunbergii var. taiwaniana.
Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 μM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 μM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats. Topics: alpha-Glucosidases; Animals; Benzofurans; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucose Intolerance; Glycoside Hydrolase Inhibitors; Kinetics; Male; Obesity; Phenols; Plant Extracts; Plant Leaves; Rats; Rats, Wistar; Saccharomyces cerevisiae; Stilbenes; Swine; Vitis | 2015 |
The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats.
Lithospermic acid B (LAB), an active component isolated from Salvia miltiorrhiza radix, has been reported to have antioxidant effects. We examined the effects of LAB on the prevention of diabetic retinopathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes.. LAB (10 or 20 mg/kg) or normal saline were given orally once daily to 24-week-old male OLETF rats for 52 weeks. At the end of treatment, fundoscopic findings, vascular endothelial growth factor (VEGF) expression in the eyeball, VEGF levels in the ocular fluid, and any structural abnormalities in the retina were assessed. Glucose metabolism, serum levels of high-sensitivity C-reactive protein (hsCRP), monocyte chemotactic protein-1 (MCP1), and tumor necrosis factor-alpha (TNFα) and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were also measured. Treatment with LAB prevented vascular leakage and basement membrane thickening in retinal capillaries in a dose-dependent manner. Insulin resistance and glucose intolerance were significantly improved by LAB treatment. The levels of serum hsCRP, MCP1, TNFα, and urinary 8-OHdG were lower in the LAB-treated OLETF rats than in the controls.. Treatment with LAB had a preventive effect on the development of diabetic retinopathy in this animal model, probably because of its antioxidative effects and anti-inflammatory effects. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Benzofurans; C-Reactive Protein; Chemokine CCL2; Deoxyguanosine; Depsides; Diabetic Retinopathy; Glucose; Glucose Intolerance; Insulin Resistance; Male; Obesity; Rats; Rats, Long-Evans; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A | 2014 |
Identification of fused-ring alkanoic acids with improved pharmacokinetic profiles that act as G protein-coupled receptor 40/free fatty acid receptor 1 agonists.
The G protein-coupled receptor 40 (GPR40)/free fatty acid receptor 1 (FFA1) has emerged as an attractive target for a novel insulin secretagogue with glucose dependency. We previously identified phenylpropanoic acid derivative 1 (3-{4-[(2',6'-dimethylbiphenyl-3-yl)methoxy]-2-fluorophenyl}propanoic acid) as a potent and orally available GPR40/FFA1 agonist; however, 1 exhibited high clearance and low oral bioavailability, which was likely due to its susceptibility to β-oxidation at the phenylpropanoic acid moiety. To identify long-acting compounds, we attempted to block the metabolically labile sites at the phenylpropanoic acid moiety by introducing a fused-ring structure. Various fused-ring alkanoic acids with potent GPR40/FFA1 activities and good PK profiles were produced. Further optimizations of the lipophilic portion and the acidic moiety led to the discovery of dihydrobenzofuran derivative 53 ((6-{[4'-(2-ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-dihydro-1-benzofuran-3-yl)acetic acid), which acted as a GPR40/FFA1 agonist with in vivo efficacy during an oral glucose tolerance test (OGTT) in rats with impaired glucose tolerance. Topics: Acetates; Acids, Acyclic; Animals; Benzofurans; CHO Cells; Cricetinae; Cricetulus; Female; Glucose Intolerance; Glucose Tolerance Test; Humans; Insulin; Insulin Secretion; Models, Molecular; Protein Binding; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Species Specificity | 2012 |