benzofurans and Dystonia

benzofurans has been researched along with Dystonia* in 1 studies

Other Studies

1 other study(ies) available for benzofurans and Dystonia

ArticleYear
Chronic dopamine D1, dopamine D2 and combined dopamine D1 and D2 antagonist treatment in Cebus apella monkeys: antiamphetamine effects and extrapyramidal side effects.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 1999, Volume: 20, Issue:1

    To determine: (1) whether the apparent lack of efficacy of dopamine D1 (D1) antagonists in the clinic might be attributable to development of tolerance to antipsychotic effects; and (2) whether combined D1 and D2 antagonism might contribute to clozapine's clinical profile, eight Cebus apella monkeys were chronically treated with a D1 antagonist (NNC 756) ((+)-8-chloro-7-hydroxy-3-methyl-5-(7-(2,3- dihydrobenzofuranyl)-2,3,4,5-tetrahydro-1H-3-benzazepine), a D2 antagonist (raclopride) or a combination of the two antagonists. Prior neuroleptic exposure had resulted in oral dyskinesia in seven monkeys and sensitization to dystonia in all, yielding a model for acute and chronic extrapyramidal side effects (EPS). Dextroamphetamine-induced motoric unrest and stereotypies were used as a psychosis model. We found tolerance toward dystonic symptoms during D1 and D1 + D2 treatments but not during D2 treatment. D2 but not D1 or D1 + D2 antagonism caused exacerbation of dyskinesia. Both D1 and D1 + D2 antagonism were superior to D2 antagonism alone in counteracting the amphetamine-induced behaviors, with no tolerance to antiamphetamine effects. These findings suggest: (1) reasons other than tolerance (e.g., differences among antagonists) may explain the lack of efficacy in clinical trials with D1 antagonists; and (2) that D1 antagonism alone or combined and modest D1 and D2 antagonism offers the potential of antipsychotic efficacy with a lower risk of EPS than traditional D2 antagonism. Further clinical trials with D1 or combined D1 and D2 antagonists are, therefore, recommended.

    Topics: Amphetamine; Animals; Arousal; Basal Ganglia Diseases; Benzazepines; Benzofurans; Cebus; Dopamine Agents; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Drug Interactions; Dyskinesia, Drug-Induced; Dystonia; Male; Motor Activity; Raclopride; Receptors, Dopamine D1; Receptors, Dopamine D2; Salicylamides; Stereotyped Behavior

1999