benzofurans and Disease-Resistance

benzofurans has been researched along with Disease-Resistance* in 2 studies

Other Studies

2 other study(ies) available for benzofurans and Disease-Resistance

ArticleYear
SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves.
    Proteomics, 2017, Volume: 17, Issue:13-14

    Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.

    Topics: Animals; Benzofurans; Bombyx; Disease Resistance; Insect Proteins; Morus; Nucleopolyhedroviruses; Plant Leaves; Proteome; Proteomics; Stilbenes; Ultraviolet Rays

2017
Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries.
    International journal of food microbiology, 2015, Feb-02, Volume: 194

    This study was conducted to characterize the forms of disease resistance induced by methyl jasmonate (MeJA) in harvested grape berries and to evaluate the impact of the induced resistance on fruit quality. The results showed that MeJA treatment at concentrations from 10 to 100μmol/L could effectively induce disease resistance against Botrytis cinerea and reduce disease incidence in grape berries. The induced disease resistance was tightly associated with increased H2O2 generation, enhanced expression of the defense-related gene VvNPR1.1 and accumulation of stilbene phytoalexins such as tran-resveratrol and its oligomer (trans-)ε-viniferin. The expression of the defense-related gene and synthesis of phytoalexins in 10μmol/L MeJA-treated grape berries were only significantly enhanced upon inoculating the berries with B. cinerea, whereas the 50 or 100μmol/L of MeJA treatment directly induced these defense responses. Hence, we deduce that the low concentration of MeJA (10μmol/L) triggered a priming defense mechanism, while higher concentrations of MeJA (50 or 100μmol/L) directly activated defense responses, thus enhancing disease resistance in grape berries. Moreover, the primed grape berries maintained higher contents of soluble sugars and higher DPPH radical scavenging activity and reducing power compared with those expressing direct defense responses. These results indicate that priming of defense is a cost-effective strategy to protect harvested grape berries from B. cinerea infection in terms of minimizing quality loss.

    Topics: Acetates; Benzofurans; Botrytis; Cyclopentanes; Disease Resistance; Fruit; Gene Expression Regulation; Hydrogen Peroxide; Oxylipins; Plant Growth Regulators; Resveratrol; Stilbenes; Vitis

2015