benzofurans has been researched along with Brain-Injuries* in 15 studies
15 other study(ies) available for benzofurans and Brain-Injuries
Article | Year |
---|---|
Potential Protective Effect of Dl-3-n-butylphthalide on Chronic Cerebral Ischemia Brain Injury.
Chronic cerebral ischemia is one of the common ischemic cerebrovascular diseases. Chronic cerebral ischemia can lead to brain dysfunction, and its pathophysiological mechanism involves inflammation, blood-brain barrier destruction, oxidative stress, and other factors. As it is difficult to detect, it is easily overlooked, and it is often only observed following the onset of cognitive dysfunction. At present, there are only a few drugs for its treatment. Dl-3-n-butylphthalide (NBP), a compound extracted from celery seed, may play an important role in protecting against brain damage caused by chronic cerebral ischemia. Therefore, here, we have paid attention to the prevention and treatment of chronic cerebral ischemia with NBP. Topics: Benzofurans; Brain Injuries; Brain Ischemia; Humans; Neuroprotective Agents | 2022 |
Dl-3-n-butylphthalide attenuates brain injury caused by cortical infarction accompanied by cranial venous drainage disturbance.
Cerebral venous disorder may have a harmful effect on ischaemic stroke; however, the underlying mechanism remains to be elucidated. Although Dl-3-n-butylphthalide is a multitarget agent for antiischaemic stroke, its neuroprotective role in brain ischaemia accompanied by brain venous disturbance remains unclear. In this study, we induced cerebral venous disturbance by the occlusion of bilateral external jugular veins (EJVs) to explore the potential mechanism of the adverse effects of cerebrovenous disorders in cerebral infarction and explore the protective effect of Dl-3-n-butylphthalide on cerebral infarction accompanied through cerebral venous disturbance.. Cerebral venous disturbance was induced in Sprague-Dawley rats through the permanent occlusion of bilateral EJVs, and cerebral ischaemic stroke was induced through the permanent occlusion of the right cortical branches of the middle cerebral artery. 2,3,5-triphenyltetrazolium chloride staining, MRI, Evans blue extravasation and behavioural test were performed to evaluate infarction volume, cerebral blood flow (CBF), blood-brain barrier (BBB) integrity and neurological function. Immunofluorescence staining and western blot analysis were performed to detect loss of neuron, endothelial cells, pericytes and tight junctions.. Bilateral EJVs occlusion did not cause cerebral infarction; however, it increased the infarction volume compared with the simple middle cerebral artery occlusion (MCAO) group, accompanied by severe neuron loss, worse neurological function, lower CBF, increased EJVs pressure, exacerbated Evans blue extravasation and brain oedema, as well as attenuated angiogenesis. Dl-3-n-butylphthalide displayed a neuroprotective effect in rats with MCAO accompanied by EJVs occlusion by reducing neuron loss, accelerating CBF restoration, promoting angiogenesis and relieving BBB damage.. Bilateral EJVs occlusion did not significantly affect normal rats but aggravated brain damage in the case of ischaemic stroke. Dl-3-n-butylphthalide treatment plays a neuroprotective role in rats with MCAO accompanied by EJVs occlusion, mainly due to the promotion of CBF restoration and BBB protection. Topics: Animals; Benzofurans; Brain Injuries; Brain Ischemia; Drainage; Endothelial Cells; Evans Blue; Infarction, Middle Cerebral Artery; Ischemic Stroke; Rats; Rats, Sprague-Dawley; Stroke | 2022 |
Senkyunolide H Affects Cerebral Ischemic Injury through Regulation on Autophagy of Neuronal Cells via P13K/AKT/mTOR Signaling Pathway.
Topics: Animals; Apoptosis; Autophagy; Benzofurans; Brain Injuries; Brain Ischemia; Liposomes; Nanoparticles; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; TOR Serine-Threonine Kinases; Water; Xenobiotics | 2022 |
Fraxinellone ameliorates intracerebral hemorrhage-induced secondary brain injury by regulating Krüppel-like transcription factor 2 expression in rats.
Damage to the blood-brain barrier (BBB) is an important factor leading to intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Krüppel-like transcription factor 2 (KLF2) plays an important role in the maintenance of the BBB. This study aims to detect the changes of KLF2 after ICH and evaluate the potential effects of fraxinellone on ICH-induced SBI and its correlation with KLF2. An ICH model was established by injecting autologous blood into the right basal ganglia of Sprague-Dawley (SD) rats. First, after ICH induction, the protein levels of KLF2 were reduced. Then, we found that the decrease of KLF2 protein levels induced by ICH could be effectively reversed with the treatment of fraxinellone in vascular endothelial cells. Furthermore, fraxinellone treatment effectively alleviated brain edema, decreased the levels of TNF-α and IL-1β, and improved neuronal cell degeneration induced by ICH. Meanwhile, fraxinellone ameliorated neurobehavioral disorders, motor and sensory impairments, and neurobehavioral disorders and memory loss caused by ICH. Collectively, these findings reveal that KLF2 may be a potential target for fraxinellone to exert neuroprotective effects after ICH, and fraxinellone could be a potential therapeutic agent for SBI after ICH. Topics: Animals; Benzofurans; Brain Edema; Brain Injuries; Cerebral Hemorrhage; Disease Models, Animal; Endothelial Cells; Kruppel-Like Transcription Factors; Rats; Rats, Sprague-Dawley | 2021 |
Phthalide derivative CD21 ameliorates ischemic brain injury in a mouse model of global cerebral ischemia: involvement of inhibition of NLRP3.
The activation of NLRP3 inflammasome is closely related to ischemic brain injury and inhibition of NLRP3 inflammasome activation may be a new therapeutic strategy for ischemic stroke. Our previous studies showed that ligustilide (LIG) had a dose-dependent neuroprotective effect on various models of cerebral ischemia and dementia in vivo and in vitro. CD21, a kind of phthalide derivative, was modified from LIG. In this study, we established a global cerebral ischemia-reperfusion model in mice by bilateral common carotid artery ligation (2VO), and explored the neuroprotective effect of CD21 and its anti-inflammatory mechanism on cerebral ischemia mice. CD21 significantly improved weight loss, neurobehavioral deficits and neurons loss in hippocampal CA1 and caudate putamen (CPu) subregions, which were induced by 2VO in mice. CD21 significantly inhibited the overactivation of astrocyte and microglia, and decreased the mRNA level of IL-6, TNF-α and IL-1β. Moreover, CD21 significantly inhibited the activation of TLR4/NF-κB signaling pathway mediated by HMGB1 and NLRP3/ASC/Caspase-1 signaling pathway mediated by Cathepsin B, thus inhibiting the activation of NLRP3 inflammasome. Our results demonstrated that CD21 may exert a neuroprotection by inhibiting NLRP3 inflammasome activation after cerebral ischemia. These findings provide a new strategy for the treatment of ischemic stroke. Topics: Animals; Anti-Inflammatory Agents; Astrocytes; Benzofurans; Body Weight; Brain Injuries; Brain Ischemia; CARD Signaling Adaptor Proteins; Caspase 1; Cathepsins; Cytokines; Disease Models, Animal; HMGB1 Protein; Inflammasomes; Male; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; NF-kappa B p50 Subunit; NLR Family, Pyrin Domain-Containing 3 Protein; Reperfusion Injury; Signal Transduction; Toll-Like Receptor 4 | 2020 |
Napabucasin prevents brain injury in neuronal neonatal rat cells through suppression of apoptosis and inflammation.
The present study investigates the protective effect of napabucasin on the expression of apoptosis markers and inflammatory factors in the neuronal rat cells with post-isolation damage. The level of ROS determined by the fluorescence measurement in the neuronal rat cells with post-isolation damage was 310.21 RFU compared to 21.45 RFU in sham cell cultures. Napabucasin treatment decreased ROS level in the neuronal rat cells with post-isolation damage in dose based manner. ROS level decreased to 278.67, 203.65, 163.32 and 26.87 RFU, respectively in 1, 2, 3 and 4 μM napabucasin treated cell cultures. Treatment with napabucasin increased GSH level significantly (P < 0.05) in the neuronal rat cells with post-isolation damage. Napabucasin treatment at with 1, 2, 3 and 4 μM concentrations increased SOD activity to 2.4, 3.6, 5.1 and 6.1 U/mg, respectively. Treatment with napabucasin increased the activity of catalase in dose based manner. Napabucasin treatment increased Gpx in injured brain cells of neonatal rats. A significant (P < 0.05) increase in the activity of AChE was observed in neuronal rat cells with post-isolation damage on treatment with napabucasin. Treatment with napabucasin reduced the level of TNF-α and IL-6 significantly (P < 0.05) compared to untreated group. Napabucasin treatment decreased the expression of Bax, caspase-3 and p53 proteins in the neuronal rat cells with post-isolation damage. Napabucasin treatment protects post-isolation damage in the neuronal cells of neonatal rats by suppression of apoptosis and oxidative stress. Therefore, napabucasin can be used for the treatment of brain injury. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Benzofurans; Brain; Brain Injuries; Caspase 3; Catalase; Dose-Response Relationship, Drug; Glutathione Peroxidase; Inflammation; Interleukin-6; Naphthoquinones; Neuroglia; Neurons; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Tumor Necrosis Factor-alpha; Tumor Suppressor Protein p53 | 2019 |
Mechanism of salvianolic acid B neuroprotection against ischemia/reperfusion induced cerebral injury.
The purpose of this study was to evaluate the cerebral protection of salvianolic acid B (Sal B) against cerebral I/R injury and investigate the underlying mechanism. As shown by 2,3,5-Triphenyltetrazolium chloride (TTC) staining and magnetic resonance imaging (MRI) analyses, Sal B significantly reduced cerebral infarct size, and accompanied with improved neurobehavioral functions as indicated by the modified Bederson score and Longa five-point scale. Sal B decreased the production of reactive oxygen species (p < .05, n = 10). The data of Western blotting and reverse transcription quantitative real time polymerase chain reaction (qRT-PCR) analyses showed that the expression of GFAP, Iba1, IL-1β, IL-6, TNF-α and Cleaved-caspase 3 was significantly reduced by Sal B in I/R injured brain tissues as compared to corresponding controls (p < .05, n = 10). Over activation of astrocytes and microglia were inhibited by Sal B as shown by immunostaining of GFAP and Iba 1. These data suggest that Sal B has neural protective effects against I/R-induced cerebral injury and could be an effective candidate for further development of clinical therapy. Topics: Animals; Benzofurans; Brain Injuries; Calcium-Binding Proteins; Caspase 3; Cerebral Infarction; Cytokines; Disease Models, Animal; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Microfilament Proteins; Neuroprotective Agents; Reperfusion | 2018 |
Neuroprotective effect of Dl-3-n-butylphthalide on patients with radiation-induced brain injury: a clinical retrospective cohort study.
To evaluate the neuroprotective effects of Dl-3-n-butylphthalide (NBP) on patients with radiation-induced brain injury, a hospital-based, clinical retrospective cohort study was conducted.. Data were collected on patients diagnosed with radiation-induced brain injury from January 2009 to January 2015 in Department of Neurology, Sun Yat-Sen Memorial Hospital. All patients enrolled have received cranial radiotherapy and were diagnosed with radiation-induced brain injury. Patients fulfilling certain eligibility criteria were recruited for analysis. The clinical therapeutic effects were observed and evaluated by LENT/SOMA scores before and one month after treatment in these two groups, respectively.. The therapeutic effects of headache (total efficiency 75.76%), eurologic deficit (total efficiency 81.58%), cognitive functions (total efficiency 77.78%) and MRI results (total efficiency 74.29%) were better in the experimental group than those in the control group (p < 0.05). Nevertheless, there was no significant difference in mood and personality changes between these two groups.. Administration of Dl-3-n-butylphthalide, in adjunct to corticosteroid therapy, might provide a better outcome in patients with radiation-induced brain injury. Topics: Adrenal Cortex Hormones; Adult; Benzofurans; Brain Injuries; Cranial Irradiation; Drug Therapy, Combination; Female; Humans; Male; Middle Aged; Neuroprotective Agents; Outcome Assessment, Health Care; Radiation Injuries; Retrospective Studies | 2017 |
DL-3-n-Butylphthalide, an anti-oxidant agent, prevents neurological deficits and cerebral injury following stroke per functional analysis, magnetic resonance imaging and histological assessment.
DL-3-n-Butylphthalide (NBP) is a synthetic compound based on L-3-n-Butylphthalide which was isolated from seeds of Apium graveolens. The present study aims at evaluating the outcome of NBP given prior to and after the onset of ischemic stroke in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Stroke was induced by the middle cerebral artery occlusion (MCAO) in SHR and WKY. For pre-treatment, NBP was administered to SHR and WKY daily for two months prior to MCAO. For post-treatment, NBP was given daily for seven consecutive days after MCAO. Seven days post-surgery, rats were tested for the presence of neurological deficits. Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining were employed to calculate the infarct volume. The cerebral cortex and corpus striatum in the ischemic penumbra area were examined microscopically for pathological changes. In SHR, NBP pre- and post-treatment significantly lowered neurological deficit scores, reduced infarct volume, and minimized pathological changes in the penumbra area when compared to oil-vehicle treated controls. In WKY, these beneficial effects were observed only in the post-treatment group. The beneficial effects of NBP post-treatment were greater in WKY than in SHR. Results indicated that NBP could exert both preventive and therapeutic effects on ischemic stroke in SHR, but only exerted therapeutic effect in WKY. Topics: Analysis of Variance; Animals; Antioxidants; Benzofurans; Brain Infarction; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Infarction, Middle Cerebral Artery; Magnetic Resonance Imaging; Male; Nervous System Diseases; Neurologic Examination; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetrazolium Salts | 2012 |
Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice.
Salvianolic acid B (SalB), a bioactive compound isolated from the Chinese medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in in vitro and in vivo studies. Here, we investigated the protective effects of SalB on traumatic brain injury (TBI) in mice. When administered within 2 h after TBI onset, SalB (25 mg/kg) reduced brain edema, lesion volume and motor functional deficits, and improved spatial learning and memory abilities. Moreover, SalB treatment inhibited the neutrophil infiltration and microglial activation at 48 h after TBI. Enzyme-linked immunosorbent assay (ELISA) for brain tissue homogenates was performed at 24 h after TBI to evaluate the expression of inflammation-related cytokines. The results showed that SalB suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas enhanced the expression of anti-inflammatory cytokines IL-10 and TGF-β1. All of these findings extended the protective role of SalB in the model of TBI and suggested that these protective effects might be associated with its anti-inflammatory activities. Thus SalB may have therapeutic potential for patients with TBI and perhaps other forms of acute brain injury. Topics: Animals; Benzofurans; Brain Edema; Brain Injuries; Inflammation; Interleukin-10; Interleukin-1beta; Learning; Male; Memory; Mice; Mice, Inbred C57BL; Molecular Structure; Space Perception; Tumor Necrosis Factor-alpha | 2011 |
Attenuation of ischemia-induced rat brain injury by 2-(-2-benzofuranyl)-2-imidazoline, a high selectivity ligand for imidazoline I(2) receptors.
The aim of this study was to determine whether 2-(2-benzofuranyl)-2-imidazoline, an imidazoline I(2) receptor ligand, could protect against cell death from brain injury and improve the functional outcome after focal cerebral ischemia in rats.. Transient focal ischemia was induced by suture occlusion of the middle cerebral artery. Rats were intraperitoneally treated with a vehicle, 2-(2-benzofuranyl)-2-imidazoline or idazoxan immediately after focal ischemia. Infarct volume was assessed by 2,3,5-triphenyltrazolium chloride staining and neurobehavioral deficits were monitored. The volume of cell death in the penumbra after ischemia was determined by immunostaining using anti-cleaved caspase-3 antibody and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL).. Both 2-(2-benzofuranyl)-2-imidazoline and idazoxan significantly improved the neurological score compared with the vehicle at 24 hours after focal ischemia. Treatment with 2-(2-benzofuranyl)-2-imidazoline or idazoxan also significantly reduced infarct volume and the number of both caspase-3- and TUNEL-positive cells in the penumbra compared with vehicle-treated rats (p<0.01 and p<0.05, respectively).. The results suggest the neuroprotective role of 2-(2-benzofuranyl)-2-imidazoline and idazoxan in focal cerebral ischemia, and may therefore represent useful targets for developing new treatments for stroke. Topics: Animals; Benzofurans; Brain Injuries; Brain Ischemia; Caspase 3; Disease Models, Animal; Idazoxan; Imidazoles; Imidazoline Receptors; In Situ Nick-End Labeling; Male; Neurologic Examination; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Tetrazolium Salts | 2009 |
A synthetic derivative of the natural product rocaglaol is a potent inhibitor of cytokine-mediated signaling and shows neuroprotective activity in vitro and in animal models of Parkinson's disease and traumatic brain injury.
Many acute and chronic neurodegenerative diseases are characterized by a localized inflammatory response and constitutive activation of the transcription factors nuclear factor-kappa B (NF-kappa B) and activator protein-1 (AP-1) as well as their upstream activating signaling cascades. Ample evidence indicates the implication of these processes in the pathogenesis of several diseases of the central nervous system. In this study, we show that a synthetic derivative of the natural product rocaglaol (compound A) displays potent anti-inflammatory properties in human endothelial and murine glial cells in vitro. Compound A inhibited cytokine- and lipopolysaccharide-induced release of various cytokines/chemokines and of nitric oxide as well as expression of the adhesion molecule endothelial leukocyte adhesion molecule-1 and the inducible enzymes nitric-oxide synthase and cyclooxygenase-2. As shown by immunocytochemistry and immunoblotting, compound A inhibited NF-kappa B and AP-1 activity in mixed glial cultures. Compound A exhibited neuroprotective activity in vitro and in vivo. 1-Methyl-4-phenylpyridinium-induced damage of mesencephalic dopaminergic neurons was significantly decreased, and long-term treatment of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine-injected mice with compound A significantly and dose-dependently reduced dopaminergic neuronal cell death. In addition, shortterm application of compound A to rats suffering from traumatic brain injury induced by subdural hematoma resulted in a significant reduction of the cerebral infarct volume. These results suggest that by inhibiting NF-kappa B and AP-1 signaling, compound A is able to reduce tissue inflammation and neuronal cell death, resulting in significant neuroprotection in animal models of neurodegeneration. Topics: Animals; Benzofurans; Brain Injuries; Cells, Cultured; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Parkinson Disease; Plant Extracts; Rats; Rats, Wistar | 2005 |
Modulation of IL-1 beta gene expression by lipid peroxidation inhibition after kainic acid-induced rat brain injury.
Brain injury was induced by intraperitoneal administration of kainic acid (KA, 10 mg/kg). Animals were randomized to receive either IRFI 042 (20 mg/kg i.p.), a lipid peroxidation inhibitor, or its vehicle (NaCl 0.9% DMSO 10% 1 ml/kg i.p.) 30 min before KA administration. A first set of animals was sacrificed 6 h after KA injection to measure malondialdehyde (MDA) content, glutathione-reduced (GSH) levels and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the hippocampus. A second set of animals was sacrificed 48 h after KA administration for histological analysis. All animals were observed for monitoring the behavioral sequelae and for evaluating latency of convulsions. Sham brain injury rats were used as controls. Intraperitoneal administration of IRFI 042 significantly decreased brain MDA (cortex: KA + vehicle = 0.285 +/- 0.04 nmol/mg protein; KA + IRFI 042 = 0.156 +/- 0.02 nmol/mg protein, P < 0.005; hippocampus: KA + vehicle = 0.350 +/- 0.03 nmol/mg protein; KA + IRFI 042 = 0.17 +/- 0.04 nmol/mg protein, P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 7.81 +/- 1 micromol/g protein; KA + IRFI 042 = 12.1 +/- 1 micromol/g protein; P < 0.005) and hippocampus (KA + vehicle = 5 +/- 0.8 micromol/g protein; KA + IRFI 042 = 9.4 +/- 1.8 micromol/g protein; P < 0.005), reduced both brain IL-1beta mRNA expression and oedema, and increased latency of convulsions. Histological analysis showed a reduction of cell damage in IRFI 042-treated samples. The present data indicate that lipid peroxidation inhibition reduces IL-1beta gene expression and protects against kainic acid-induced brain damage. Topics: Animals; Behavior, Animal; Benzofurans; Brain Edema; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Gene Expression Regulation; Glutathione; Hippocampus; Interleukin-1; Kainic Acid; Lipid Peroxidation; Male; Malondialdehyde; Nerve Degeneration; Neurotoxins; Oxidative Stress; Rats; Rats, Sprague-Dawley; RNA, Messenger; Seizures | 2004 |
dl-3-n-butylphthalide reduces brain damage in mice with closed head injury.
To investigate the protective effect of dl-3-n-butylphthalide (NBP) as an anti-cerebral ischemic drug on brain damage 24 h after closed head injury in mice.. Closed head injury was induced by dropping a 50-g weight from a height of 18 cm on a metal impounder resting on the parietal bone in mice.. The neurotraumatic model induced impairment of memory function, significant cerebral edema, and disruption of the blood-brain barrier. dl-3-n-butylphthalide (50 mg.kg-1) given intraperitoneally 5 minutes and 60 minutes after the onset of closed head injury was found to attenuate the impairment of memory function (P < 0.05), alleviate brain edema in the injured cerebral cortex (P < 0.05), and reduce extravasation of plasma protein bound to Evans blue dye by 63.5% (P < 0.01). NBP was also shown to increase the activity of choline acetyltransferase in the injured cortex to 0.83 +/- 0.21 ng.min-1.mg-1 (P < 0.01, compared with 0.48 +/- 0.14 ng.min-1.mg-1 of vehicle group).. NBP provides therapeutic response in experimental closed head injury. Topics: Animals; Benzofurans; Blood-Brain Barrier; Brain Edema; Brain Injuries; Head Injuries, Closed; Male; Mice; Neuroprotective Agents | 2000 |
Reduction of traumatic brain injury-induced cerebral oedema by a free radical scavenger.
Oxygen derived free radicals have been proposed to be in part responsible for the cerebral oedema resulting from head injury. In the present study the effects of free radical suppression with MDL 74,180 (2,3-dihydro-2,2,4,6,7-pentamethyl-3-(4-methylpiperazino)-methyl-1 - benzofuran-5-ol dihydrochloride), an alpha-tocopherol analogue free radical scavenger, on the development of cerebral oedema resulting from head injury has been assessed. Fluid percussion head injury in rats caused a regional oedema 48 h after injury. Infusion of MDL 74,180 for 2 h after the injury significantly attenuated oedema development in a dose-related manner. Using magnetic resonance imaging, cerebral oedema development was monitored in head injured mice. Oedema was apparent 4 h after head injury and was greatest in the vicinity of the olfactory bulb and surrounding the ventricles. Treatment with MDL 74,180 (1-10 micrograms/kg intravenously, administered 3-5 min after the injury) significantly reduced the oedema development. MDL 74,180 is a potential treatment for the oedema caused as a result of head injury. Topics: Animals; Benzofurans; Brain Edema; Brain Injuries; Free Radical Scavengers; Magnetic Resonance Imaging; Male; Mice; Mice, Inbred Strains; Piperazines; Rats; Rats, Inbred Strains | 1996 |