benzofurans has been researched along with Brain-Injuries--Traumatic* in 4 studies
4 other study(ies) available for benzofurans and Brain-Injuries--Traumatic
Article | Year |
---|---|
Dl-3n-butylphthalide improves traumatic brain injury recovery via inhibiting autophagy-induced blood-brain barrier disruption and cell apoptosis.
Blood-brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl-3n-butylphthalide (Dl-NBP) has a neuroprotective effect with anti-inflammatory, anti-oxidative, anti-apoptotic and mitochondrion-protective functions. However, the effect and molecular mechanism of Dl-NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH-SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl-NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up-regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy-related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl-NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl-NBP for TBI recovery. Collectively, our current studies indicate that Dl-NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl-NBP, as an anti-inflammatory and anti-oxidative drug, may act as an effective strategy for TBI recovery. Topics: Animals; Apoptosis; Autophagy; Benzofurans; Blood-Brain Barrier; Brain Injuries, Traumatic; Cells, Cultured; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Recovery of Function | 2020 |
Co-administration of TiO
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier. Topics: Benzofurans; Brain Injuries, Traumatic; Humans; Mesenchymal Stem Cells; Neuroprotection; Parkinson Disease; Titanium | 2020 |
DL-3-n-butylphthalide induced neuroprotection, regenerative repair, functional recovery and psychological benefits following traumatic brain injury in mice.
Previous investigations suggest that DL-3-n-butylphthalide (NBP) is a promising multifaceted drug for the treatment of stroke. It is not clear whether NBP can treat traumatic brain injury (TBI) and what could be the mechanisms of therapeutic benefits. To address these issues, TBI was induced by a controlled cortical impact in adult male mice. NBP (100 mg/kg) or saline was intraperitoneally administered within 5 min after TBI. One day after TBI, apoptotic events including caspase-3/9 activation, cytochrome c release from the mitochondria, and apoptosis-inducing factor (AIF) translocation into the nucleus in the pericontusion region were attenuated in NBP-treated mice compared to TBI-saline controls. In the assessment of the nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) pathway, NBP ameliorated the p65 expression and the p-IκB-α/IκB-α ratio, indicating reduced NF-κB activation. Consistently, NBP reduced the upregulation of proinflammatory cytokines such as tumor necrotizing factor-alpha (TNF-α) and interleukin-1beta (IL-1β) after TBI. In sub-acute treatment experiments, NBP was intranasally delivered once daily for 3 days. At 3 days after TBI, this repeated NBP treatment significantly reduced the contusion volume and cell death in the pericontusion region. In chronic experiments up to 21 days after TBI, continues daily intranasal NBP treatment increased neurogenesis, angiogenesis, and arteriogenesis in the post-TBI brain, accompanied with upregulations of regenerative genes including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), endothelial-derived nitric oxide synthase (eNOS), and matrix metallopeptidase 9 (MMP-9). The NBP treatment significantly improved sensorimotor functional recovery and reduced post-TBP depressive behavior. These new findings demonstrate that NBP shows multiple therapeutic benefits after TBI. Topics: Animals; Behavior, Animal; Benzofurans; Brain Injuries, Traumatic; Cytokines; Disease Models, Animal; Interleukin-1beta; Male; Mice, Inbred C57BL; Neuroprotection; NF-kappa B; Recovery of Function; Signal Transduction; Up-Regulation | 2017 |
DL-3-n-Butylphthalide (NBP) Provides Neuroprotection in the Mice Models After Traumatic Brain Injury via Nrf2-ARE Signaling Pathway.
The present study was aimed to evaluate the neuroprotective effects of NBP in the mice models of TBI, as well as the possible role of Nrf2-ARE pathways in the assumptive neuroprotection. In mice,a modified Marmarou's weight-drop model was employed to induce TBI. ICR mice were randomly assigned to four experimental groups: sham, TBI, TBI+vehicle(V) and TBI+NBP. NBP (100 mg/kg) was administered via an intraperitoneal (i.p.) injection at 1 h following TBI. The administration of NBP significantly ameliorated the effects of the brain injury, including neurological deficits, brain water content, and cortical neuronal apoptosis. Furthermore, the level of malondialdehyde and the activity of superoxide dismutase (SOD) paired with glutathione peroxidase (GPx) were restored in the NBP treatment group. NBP promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus markedly, increased the expressions of Nrf2-ARE pathway-related downstream factors, including hemeoxygenase-1(HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and prevented the decline of antioxidant enzyme activities, including SOD and GPx. NBP enhanced the translocation of Nrf2 to the nucleus from the cytoplasm,verified by a western blot, immunofluorescence. Additionally, it upregulated the expression of the Nrf2 downstream factors such as HO-1 and NQO1 were also confirmed via a western blot and real-time quantitative polymerase chain reaction. In conclusion, NBP administration may increase the activities of antioxidant enzymes and attenuate brain injury in a TBI model, potentially via the mediation of the Nrf2-ARE pathway. Topics: Animals; Benzofurans; Brain Injuries, Traumatic; Disease Models, Animal; Male; Mice; Mice, Inbred ICR; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Random Allocation; Signal Transduction | 2017 |