Page last updated: 2024-10-23

benserazide and Chemical and Drug Induced Liver Injury

benserazide has been researched along with Chemical and Drug Induced Liver Injury in 1 studies

Benserazide: An inhibitor of DOPA DECARBOXYLASE that does not enter the central nervous system. It is often given with LEVODOPA in the treatment of parkinsonism to prevent the conversion of levodopa to dopamine in the periphery, thereby increasing the amount that reaches the central nervous system and reducing the required dose. It has no antiparkinson actions when given alone.
benserazide : A carbohydrazide that results from the formal condensation of the carboxy group of DL-serine with the primary amino group of 4-(hydrazinylmethyl)benzene-1,2,3-triol. An aromatic-L-amino-acid decarboxylase inhibitor (DOPA decarboxylase inhibitor) that does not enter the central nervous system, it is used as its hydrochloride salt as an adjunct to levodopa in the treatment of parkinsonism. By preventing the conversion of levodopa to dopamine in the periphery, it causes an increase in the amount of levodopa reaching the central nervous system and so reduces the required dose. Benserazide has no antiparkinson actions when given alone.

Chemical and Drug Induced Liver Injury: A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, herbal and dietary supplements and chemicals from the environment.

Research

Studies (1)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's1 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Warner, DJ1
Chen, H1
Cantin, LD1
Kenna, JG1
Stahl, S1
Walker, CL1
Noeske, T1

Other Studies

1 other study available for benserazide and Chemical and Drug Induced Liver Injury

ArticleYear
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters

2012