bay-94-8862 has been researched along with Inflammation* in 3 studies
2 review(s) available for bay-94-8862 and Inflammation
Article | Year |
---|---|
Cardiorenal benefits of finerenone: protecting kidney and heart.
Persons with diabetes and chronic kidney disease (CKD) have a high residual risk of developing cardiovascular (CV) complications despite treatment with renin-angiotensin system blockers and sodium-glucose cotransporter type 2 inhibitors. Overactivation of mineralocorticoid receptors plays a key role in the progression of renal and CV disease, mainly by promoting inflammation and fibrosis. Finerenone is a nonsteroidal selective mineralocorticoid antagonist. Recent clinical trials, such as FIDELIO-DKD and FIGARO-DKD and the combined analysis FIDELITY have demonstrated that finerenone decreases albuminuria, risk of CKD progression, and CV risk in subjects with type 2 diabetes (T2D) and CKD. As a result, finerenone should thus be considered as part of a holistic approach to kidney and CV risk in persons with T2D and CKD. In this narrative review, the impact of finerenone treatment on the CV system in persons with type 2 diabetes and CKD is analyzed from a practical point of view.Key messages:Despite inhibition of renin-angiotensin system and sodium-glucose cotransporter type 2, persons with type 2 diabetes (T2D) and chronic kidney disease (CKD) remain on high cardiovascular (CV) residual risk.Overactivation of mineralocorticoid receptors plays a key role in the progression of renal and CV disease, mainly by promoting inflammation and fibrosis that is not targeted by traditional treatments.Finerenone is a nonsteroidal selective mineralocorticoid antagonist that decreases not only albuminuria, but also the risk of CKD progression, and CV risk in subjects with T2D and CKD. Topics: Albuminuria; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Fibrosis; Glucose; Humans; Inflammation; Kidney; Mineralocorticoid Receptor Antagonists; Receptors, Mineralocorticoid; Renal Insufficiency, Chronic; Sodium | 2023 |
Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems.
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor. Topics: Diabetes Mellitus, Type 2; Fibrosis; Humans; Inflammation; Mineralocorticoid Receptor Antagonists; Naphthyridines; Reactive Oxygen Species; Receptors, Mineralocorticoid; Renal Insufficiency, Chronic; Sodium; Sodium-Glucose Transporter 2 Inhibitors | 2022 |
1 other study(ies) available for bay-94-8862 and Inflammation
Article | Year |
---|---|
Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy.
Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Diabetic Retinopathy; Gliosis; Inflammation; Mice; Mineralocorticoid Receptor Antagonists; Naphthyridines; Neovascularization, Pathologic; Rats; Rodentia; T-Lymphocytes, Regulatory; Vascular Endothelial Growth Factor A; Vascular System Injuries | 2023 |