bay-80-6946 has been researched along with Skin-Neoplasms* in 2 studies
1 review(s) available for bay-80-6946 and Skin-Neoplasms
Article | Year |
---|---|
Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma.
The identification of driver mutations in melanoma has changed the field of cancer treatment. BRAF and NRAS mutations are predominant in melanoma and lead to overactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Selective inhibitors targeting key effectors of the MAPK pathway have revolutionized the treatment of patients with advanced metastatic BRAF-mutant melanoma. However, resistance to therapy is almost universal and remains a major challenge in clinical care, with the majority of patients progressing within 1 year. Dissecting the mechanisms of resistance to targeted therapies may offer new insights into strategies for overcoming resistance. This review describes the efficacy of therapies targeting the MAPK and PI3K/AKT signaling pathways in melanoma, details the mechanisms contributing to drug resistance, and discusses current approaches to improving outcomes further. Cancer 2017;123:2118-29. © 2017 American Cancer Society. Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; CTLA-4 Antigen; Drug Administration Schedule; Drug Resistance, Neoplasm; Humans; Immunotherapy; Indoles; Ipilimumab; MAP Kinase Kinase 1; Melanoma; Molecular Targeted Therapy; Niacinamide; Nivolumab; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Pyrimidines; Quinazolines; Signal Transduction; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib | 2017 |
1 other study(ies) available for bay-80-6946 and Skin-Neoplasms
Article | Year |
---|---|
The novel PI3 kinase inhibitor, BAY 80-6946, impairs melanoma growth in vivo and in vitro.
Due to its almost universal resistance to chemotherapy, metastasized melanoma remains a major challenge in clinical oncology. Given that phosphatidyl inositol-3 kinase (PI3K) activation in melanoma cells is associated with poor prognosis, disease progression and resistance to chemotherapy, the PI3K-Akt signalling pathway is a promising therapeutic target for melanoma treatment. We analysed six human melanoma cell lines for their constitutive activation of Akt and then tested two representative lines, A375 and LOX, for their susceptibility to PI3K-inhibition by the highly specific small molecule inhibitor, BAY 80-6946. In addition, the effect of BAY 80-6946 on A375 and LOX melanoma cells was assessed in vivo in a xenotransplantation mouse model. We provide experimental evidence that specifically inhibiting the PI3K pathway and phosphorylation of Akt by this novel compound results in antitumoral activities including inhibition of proliferation, induction of apoptosis and cell cycle arrest in vitro and in vivo. However, the susceptibility did not show a clear-cut pattern and differed between the melanoma cell lines tested, resulting in in vivo growth inhibition of A375 but not LOX melanoma cells. Thus, in some cases BAY 80-6946 or related compounds may be a valuable addition to the therapeutic armamentarium. Topics: Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cells, Cultured; Enzyme Inhibitors; Humans; In Vitro Techniques; Melanoma; Mice; Mice, Nude; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrimidines; Quinazolines; Signal Transduction; Skin Neoplasms; Xenograft Model Antitumor Assays | 2014 |