bay-58-2667 and Reperfusion-Injury

bay-58-2667 has been researched along with Reperfusion-Injury* in 2 studies

Other Studies

2 other study(ies) available for bay-58-2667 and Reperfusion-Injury

ArticleYear
cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels.
    Circulation, 2017, Dec-12, Volume: 136, Issue:24

    Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model.. Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice.. Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction.

    Topics: Animals; Benzoates; Cardiotonic Agents; Cyclic AMP-Dependent Protein Kinase Type I; Disease Models, Animal; Humans; Ischemic Preconditioning; Large-Conductance Calcium-Activated Potassium Channels; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Nitric Oxide; Pyrazoles; Pyrimidines; Reperfusion Injury

2017
Pre-conditioning with the soluble guanylate cyclase activator Cinaciguat reduces ischaemia-reperfusion injury after cardiopulmonary bypass.
    European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2011, Volume: 39, Issue:2

    Activation of the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) pathway can induce potent cardioprotection-like effects against ischaemia-reperfusion injury and nitro-oxidative stress. We investigated the effects of pharmacological pre-conditioning with Cinaciguat (BAY 58-2667), a novel sGC activator on peroxynitrite-induced endothelial dysfunction in vitro, as well as on myocardial and coronary vascular function during reperfusion in a canine model of cardioplegic arrest and extracorporeal circulation.. Isolated coronary arterial rings exposed to peroxynitrite were investigated for vasomotor function. Vehicle- and Cinaciguat-pre-treated (8.33 μg h(-1) or 25 μg h(-1) intravenous (IV) for 30 min) anaesthetised dogs (n = 6-7 per group) underwent hypothermic cardiopulmonary bypass with 60 min of hypothermic cardioplegic arrest. Left- and right-ventricular end-systolic pressure-volume relationship (ESPVR) was measured by a pressure-volume conductance catheter at baseline and after 60 min of reperfusion. Coronary blood flow, vasodilatation to acetylcholine and myocardial level of adenosine triphosphate were determined.. Pre-incubation of coronary rings with Cinaciguat improved peroxynitrite-induced endothelial dysfunction. Compared with control, pharmacological pre-conditioning with Cinaciguat (25 μg h(-1)) led to higher myocardial adenosine triphosphate content, to a better recovery of left- and right-ventricular contractility (Δ slope of left ventricular ESPVR given as percent of baseline: 102.4 ± 19.1% vs 56.0 ± 7.1%) and to a higher coronary blood flow (49.6 ± 3.5 ml min(-1) vs 28.0 ± 3.9 ml min(-1)). Endothelium-dependent vasodilatation to acetylcholine was improved in the treatment groups.. Pre-conditioning with Cinaciguat improves myocardial and endothelial function after cardiopulmonary bypass with hypothermic cardiac arrest. The observed protective effects imply that pharmacological sGC activation could be a novel therapeutic option in the protection against ischaemia-reperfusion injury in cardiac surgery.

    Topics: Animals; Benzoates; Cardiopulmonary Bypass; Cardiotonic Agents; Disease Models, Animal; Dogs; Drug Evaluation, Preclinical; Endothelium, Vascular; Enzyme Activation; Female; Guanylate Cyclase; Hemodynamics; Male; Oxidative Stress; Receptors, Cytoplasmic and Nuclear; Reperfusion Injury; Soluble Guanylyl Cyclase; Tissue Culture Techniques; Vasomotor System; Ventricular Function, Left; Ventricular Function, Right

2011