bay-58-2667 has been researched along with Myocardial-Infarction* in 5 studies
5 other study(ies) available for bay-58-2667 and Myocardial-Infarction
Article | Year |
---|---|
Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase.
It has been suggested that the nitric oxide-sensitive guanylyl cyclase (NO-GC)/cyclic guanosine monophosphate (cGMP)-dependent signalling pathway affords protection against cardiac damage during acute myocardial infarction (AMI). It is, however, not clear whether the NO-GC/cGMP system confers its favourable effects through a mechanism located in cardiomyocytes (CMs). The aim of this study was to evaluate the infarct-limiting effects of the endogenous NO-GC in CMs in vivo.. Ischemia/reperfusion (I/R) injury was evaluated in mice with a CM-specific deletion of NO-GC (CM NO-GC KO) and in control siblings (CM NO-GC CTR) subjected to an in vivo model of AMI. Lack of CM NO-GC resulted in a mild increase in blood pressure but did not affect basal infarct sizes after I/R. Ischemic postconditioning (iPost), administration of the phosphodiesterase-5 inhibitors sildenafil and tadalafil as well as the NO-GC activator cinaciguat significantly reduced the amount of infarction in control mice but not in CM NO-GC KO littermates. Interestingly, NS11021, an opener of the large-conductance and Ca2+-activated potassium channel (BK), an important downstream effector of cGMP/cGKI in the cardiovascular system, protects I/R-exposed hearts of CM NO-GC proficient and deficient mice.. These findings demonstrate an important role of CM NO-GC for the cardioprotective signalling following AMI in vivo. CM NO-GC function is essential for the beneficial effects on infarct size elicited by iPost and pharmacological elevation of cGMP; however, lack of CM NO-GC does not seem to disrupt the cardioprotection mediated by the BK opener NS11021. Topics: Animals; Benzoates; Cyclic GMP; Disease Models, Animal; Enzyme Activators; Female; Ischemic Postconditioning; Large-Conductance Calcium-Activated Potassium Channels; Male; Mice, Knockout; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Nitric Oxide; Phosphodiesterase 5 Inhibitors; Signal Transduction; Sildenafil Citrate; Soluble Guanylyl Cyclase; Tadalafil; Tetrazoles; Thiourea; Time Factors; Up-Regulation | 2018 |
cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels.
Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model.. Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice.. Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction. Topics: Animals; Benzoates; Cardiotonic Agents; Cyclic AMP-Dependent Protein Kinase Type I; Disease Models, Animal; Humans; Ischemic Preconditioning; Large-Conductance Calcium-Activated Potassium Channels; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Nitric Oxide; Pyrazoles; Pyrimidines; Reperfusion Injury | 2017 |
Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide.
Cinaciguat (BAY 58-2667) is a novel nitric oxide (NO)-independent activator of soluble guanylate cyclase (sGC), which induces cGMP-generation and vasodilation in diseased vessels. We tested the hypothesis that cinaciguat might trigger protection against ischemia/reperfusion (I/R) in the heart and adult cardiomyocytes through cGMP/protein kinase G (PKG)-dependent generation of hydrogen sulfide (H(2)S). Adult New Zealand White rabbits were pretreated with 1 or 10 μg/kg cinaciguat (iv) or 10% DMSO (vehicle) 15 min before I/R or with 10 μg/kg cinaciguat (iv) at reperfusion. Additionally, adult male ICR mice were treated with either cinaciguat (10 μg/kg ip) or vehicle 30 min before I/R or at the onset of reperfusion (10 μg/kg iv). The PKG inhibitor KT5283 (KT; 1 mg/kg ip) or dl-propargylglycine (PAG; 50 mg/kg ip) the inhibitor of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) were given 10 and 30 min before cinaciguat. Cardiac function and infarct size were assessed by echocardiography and tetrazolium staining, respectively. Primary adult mouse cardiomyocytes were isolated and treated with cinaciguat before simulated ischemia/reoxygenation. Cinaciguat caused 63 and 41% reduction of infarct size when given before I/R and at reperfusion in rabbits, respectively. In mice, cinaciguat pretreatment caused a more robust 80% reduction in infarct size vs. 63% reduction when given at reperfusion and preserved cardiac function following I/R, which were blocked by KT and PAG. Cinaciguat also caused an increase in myocardial PKG activity and CSE expression. In cardiomyocytes, cinaciguat (50 nM) reduced necrosis and apoptosis and increased H(2)S levels, which was abrogated by KT. Cinaciguat is a novel molecule to induce H(2)S generation and a powerful protection against I/R injury in heart. Topics: Animals; Apoptosis; Benzoates; Cell Survival; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cystathionine gamma-Lyase; Disease Models, Animal; Enzyme Activation; Enzyme Activators; Enzyme Inhibitors; Guanylate Cyclase; Hydrogen Sulfide; Male; Mice; Mice, Inbred ICR; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Necrosis; Rabbits; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Soluble Guanylyl Cyclase; Ultrasonography; Up-Regulation; Ventricular Function, Left | 2012 |
BAY 58-2667, a nitric oxide-independent guanylyl cyclase activator, pharmacologically post-conditions rabbit and rat hearts.
BAY 58-2667 (BAY-58) directly activates soluble guanylyl cyclase without tolerance in a nitric oxide (NO)-independent manner, and its haemodynamic effect is similar to that of nitroglycerin. We tested whether BAY-58 could make both rabbit and rat hearts resistant to infarction when given at the end of an ischaemic insult.. All hearts were exposed to 30 min regional ischaemia followed by 120-(isolated hearts) or 180-(in situ hearts) min reperfusion. BAY-58 (1-50 nM) infused for 60 min starting 5 min before reperfusion significantly reduced infarction from 33.0 +/- 3.2% in control isolated rabbit hearts to 9.5-12.7% (P < 0.05). In a more clinically relevant in situ rabbit model, infarct size was similarly reduced with a loading dose of 53.6 microg/kg followed by a 60 min infusion of 1.25 microg/kg/min (41.1 +/- 3.1% infarction in control hearts to 16.0 +/- 4.4% in treated hearts, P < 0.05). BAY-58 similarly decreased infarction in the isolated rat heart, and protection was abolished by co-treatment with a protein kinase G (PKG) antagonist, or a mitochondrial K(ATP) channel antagonist. Conversely, N(omega)-nitro-L-arginine-methyl-ester-hydrochloride, a NO-synthase inhibitor, failed to block BAY-58's ability to decrease infarction, consistent with the latter's putative NO-independent activation of PKG. Finally, BAY-58 increased myocardial cGMP content in reperfused hearts while cAMP was unchanged.. When applied at reperfusion, BAY-58 is an effective cardioprotective agent with a mechanism similar to that of ischaemic pre-conditioning and, hence, should be a candidate for treatment of acute myocardial infarction in man. Topics: Animals; Benzoates; Cardiotonic Agents; Cyclic AMP; Cyclic GMP; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Enzyme Activation; Guanylate Cyclase; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Rabbits; Rats; Rats, Wistar | 2009 |
Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury.
The role of the nitric oxide/cGMP/cGMP-dependent protein kinase G pathway in myocardial protection and preconditioning has been the object of intensive investigations. The novel soluble guanylate cyclase activator cinaciguat has been reported to elevate intracellular [cGMP] and activate the nitric oxide/cGMP/cGMP-dependent protein kinase G pathway in vivo. We investigated the effects of cinaciguat on myocardial infarction induced by isoproterenol in rats.. Rats were treated orally twice a day for 4 days with vehicle or cinaciguat (10 mg/kg). Isoproterenol (85 mg/kg) was injected subcutaneously 2 days after the first treatment at an interval of 24 hours for 2 days to produce myocardial infarction. After 17 hours, histopathological observations and left ventricular pressure-volume analysis to assess cardiac function with a Millar microtip pressure-volume conductance catheter were performed, and levels of biochemicals of the heart tissues were measured. Gene expression analysis was performed by quantitative real-time polymerase chain reaction. Isolated canine coronary arterial rings exposed to peroxynitrite were investigated for vasomotor function, and immunohistochemistry was performed for cGMP and nitrotyrosine. The present results show that cinaciguat treatment improves histopathological lesions, improves cardiac performance, improves impaired cardiac relaxation, reduces oxidative stress, ameliorates intracellular enzyme release, and decreases cyclooxygenase 2, transforming growth factor-beta, and beta-actin mRNA expression in experimentally induced myocardial infarction in rats. In vitro exposure of coronary arteries to peroxynitrite resulted in an impairment of endothelium-dependent vasorelaxation, increased nitro-oxidative stress, and reduced intracellular cGMP levels, which were all improved by cinaciguat. A cardioprotective effect of postischemic cinaciguat treatment was shown in a canine model of global ischemia/reperfusion.. Pharmacological soluble guanylate cyclase activation could be a novel approach for the prevention and treatment of ischemic heart disease. Topics: Adrenergic beta-Agonists; Animals; Benzoates; Cardiotonic Agents; Cyclic AMP; Cyclic GMP; Cyclooxygenase 2; Dogs; Female; Gene Expression; Guanylate Cyclase; Heart Function Tests; Isoproterenol; L-Lactate Dehydrogenase; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Survival Rate; Thiobarbituric Acid Reactive Substances; Transforming Growth Factor beta1 | 2009 |