bay-58-2667 and Cardiomegaly

bay-58-2667 has been researched along with Cardiomegaly* in 2 studies

Other Studies

2 other study(ies) available for bay-58-2667 and Cardiomegaly

ArticleYear
The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.
    PloS one, 2012, Volume: 7, Issue:11

    Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•)-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.. Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1), 60nmol/L) in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.. We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L) elicited concentration-dependent antihypertrophic actions, inhibiting ET(1)-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1)-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP), without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.. Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar) concentrations. Thus this distinctive sGC ligand may potentially represent an alternative therapeutic approach for limiting myocardial hypertrophy.

    Topics: Animals; Benzoates; Cardiomegaly; Cell Adhesion Molecules; Cells, Cultured; Cyclic GMP; Endothelin-1; Enzyme Activation; Fibroblasts; Guanylate Cyclase; Microfilament Proteins; Myocytes, Cardiac; Phosphoproteins; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase

2012
Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling.
    Circulation, 2006, Jan-17, Volume: 113, Issue:2

    Severe pulmonary hypertension is a disabling disease with high mortality, characterized by pulmonary vascular remodeling and right heart hypertrophy. Using wild-type and homozygous endothelial nitric oxide synthase (NOS3(-/-)) knockout mice with pulmonary hypertension induced by chronic hypoxia and rats with monocrotaline-induced pulmonary hypertension, we examined whether the soluble guanylate cyclase (sGC) stimulator Bay41-2272 or the sGC activator Bay58-2667 could reverse pulmonary vascular remodeling.. Both Bay41-2272 and Bay58-2667 dose-dependently inhibited the pressor response of acute hypoxia in the isolated perfused lung system. When wild-type (NOS3(+/+)) or NOS3(-/-) mice were housed under 10% oxygen conditions for 21 or 35 days, both strains developed pulmonary hypertension, right heart hypertrophy, and pulmonary vascular remodeling, demonstrated by an increase in fully muscularized peripheral pulmonary arteries. Treatment of wild-type mice with the activator of sGC, Bay58-2667 (10 mg/kg per day), or the stimulator of sGC, Bay41-2272 (10 mg/kg per day), after full establishment of pulmonary hypertension from day 21 to day 35 significantly reduced pulmonary hypertension, right ventricular hypertrophy, and structural remodeling of the lung vasculature. In contrast, only minor efficacy of chronic sGC activator therapies was noted in NOS3(-/-) mice. In monocrotaline-injected rats with established severe pulmonary hypertension, both compounds significantly reversed hemodynamic and structural changes.. Activation of sGC reverses hemodynamic and structural changes associated with monocrotaline- and chronic hypoxia-induced experimental pulmonary hypertension. This effect is partially dependent on endogenous nitric oxide generated by NOS3.

    Topics: Animals; Benzoates; Cardiomegaly; Disease Models, Animal; Enzyme Activation; Guanylate Cyclase; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Mice; Mice, Knockout; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Pulmonary Circulation; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Solubility

2006