bay-41-8543 has been researched along with Hypertension--Pulmonary* in 6 studies
1 review(s) available for bay-41-8543 and Hypertension--Pulmonary
Article | Year |
---|---|
Soluble guanylate cyclase stimulators in pulmonary hypertension.
Soluble guanylate cyclase (sGC) is a key enzyme in the nitric oxide (NO) signalling pathway. On binding of NO to its prosthetic haem group, sGC catalyses the synthesis of the second messenger cyclic guanosine monophosphate (cGMP), which promotes vasodilation and inhibits smooth muscle proliferation, leukocyte recruitment, platelet aggregation and vascular remodelling through a number of downstream mechanisms. The central role of the NO-sGC-cGMP pathway in regulating pulmonary vascular tone is demonstrated by the dysregulation of NO production, sGC activity and cGMP degradation in pulmonary hypertension (PH). The sGC stimulators are novel pharmacological agents that directly stimulate sGC, both independently of NO and in synergy with NO. Optimisation of the first sGC stimulator, YC-1, led to the development of the more potent and more specific sGC stimulators, BAY 41-2272, BAY 41-8543 and riociguat (BAY 63-2521). Other sGC stimulators include CFM-1571, BAY 60-4552, vericiguat (BAY 1021189), the acrylamide analogue A-350619 and the aminopyrimidine analogues. BAY 41-2272, BAY 41-8543 and riociguat induced marked dose-dependent reductions in mean pulmonary arterial pressure and vascular resistance with a concomitant increase in cardiac output, and they also reversed vascular remodelling and right heart hypertrophy in several experimental models of PH. Riociguat is the first sGC stimulator that has entered clinical development. Clinical trials have shown that it significantly improves pulmonary vascular haemodynamics and increases exercise ability in patients with pulmonary arterial hypertension (PAH), chronic thromboembolic PH and PH associated with interstitial lung disease. Furthermore, riociguat reduces mean pulmonary arterial pressure in patients with PH associated with chronic obstructive pulmonary disease and improves cardiac index and pulmonary vascular resistance in patients with PH associated with left ventricular systolic dysfunction. These promising results suggest that sGC stimulators may constitute a valuable new therapy for PH. Other trials of riociguat are in progress, including a study of the haemodynamic effects and safety of riociguat in patients with PH associated with left ventricular diastolic dysfunction, and long-term extensions of the phase 3 trials investigating the efficacy and safety of riociguat in patients with PAH and chronic thromboembolic PH. Finally, sGC stimulators may also have potential therapeutic applications in other dis Topics: Animals; Clinical Trials as Topic; Cyclic GMP; Guanylate Cyclase; Heterocyclic Compounds, 2-Ring; Humans; Hypertension, Pulmonary; Morpholines; Nitric Oxide; Pyrazoles; Pyridines; Pyrimidines; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase | 2013 |
5 other study(ies) available for bay-41-8543 and Hypertension--Pulmonary
Article | Year |
---|---|
Nitric Oxide-Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease.
Sickle cell disease (SCD) is associated with intravascular hemolysis and oxidative inhibition of nitric oxide (NO) signaling. BAY 54-6544 is a small-molecule activator of oxidized soluble guanylate cyclase (sGC), which, unlike endogenous NO and the sGC stimulator, BAY 41-8543, preferentially binds and activates heme-free, NO-insensitive sGC to restore enzymatic cGMP production. We tested orally delivered sGC activator, BAY 54-6544 (17 mg/kg/d), sGC stimulator, BAY 41-8543, sildenafil, and placebo for 4-12 weeks in the Berkeley transgenic mouse model of SCD (BERK-SCD) and their hemizygous (Hemi) littermate controls (BERK-Hemi). Right ventricular (RV) maximum systolic pressure (RVmaxSP) was measured using micro right-heart catheterization. RV hypertrophy (RVH) was determined using Fulton's index and RV corrected weight (ratio of RV to tibia). Pulmonary artery vasoreactivity was tested for endothelium-dependent and -independent vessel relaxation. Right-heart catheterization revealed higher RVmaxSP and RVH in BERK-SCD versus BERK-Hemi, which worsened with age. Treatment with the sGC activator more effectively lowered RVmaxSP and RVH, with 90-day treatment delivering superior results, when compared with other treatments and placebo groups. In myography experiments, acetylcholine-induced (endothelium-dependent) and sodium-nitroprusside-induced (endothelium-independent NO donor) relaxation of the pulmonary artery harvested from placebo-treated BERK-SCD was impaired relative to BERK-Hemi but improved after therapy with sGC activator. By contrast, no significant effect for sGC stimulator or sildenafil was observed in BERK-SCD. These findings suggest that sGC is oxidized in the pulmonary arteries of transgenic SCD mice, leading to blunted responses to NO, and that the sGC activator, BAY 54-6544, may represent a novel therapy for SCD-associated pulmonary arterial hypertension and cardiac remodeling. Topics: Anemia, Sickle Cell; Animals; Arterial Pressure; Disease Models, Animal; Enzyme Activation; Enzyme Activators; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Left Ventricular; Mice, Transgenic; Morpholines; Nitric Oxide; Pulmonary Artery; Pyrimidines; Sildenafil Citrate; Soluble Guanylyl Cyclase; Vasodilation; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Pressure; Ventricular Remodeling | 2018 |
Chronic intratracheal application of the soluble guanylyl cyclase stimulator BAY 41-8543 ameliorates experimental pulmonary hypertension.
Dysfunction of the NO/sGC/cGMP signaling pathway has been implicated in the pathogenesis of pulmonary hypertension (PH). Therefore, agents stimulating cGMP synthesis via sGC are important therapeutic options for treatment of PH patients. An unwanted effect of this novel class of drugs is their systemic hypotensive effect. We tested the hypothesis that aerosolized intra-tracheal delivery of the sGC stimulator BAY41-8543 could diminish its systemic vasodilating effect.Pharmacodynamics and -kinetics of BAY41-8543 after single intra-tracheal delivery was tested in healthy rats. Four weeks after a single injection of monocrotaline (MCT, 60 mg/kg s.c.), rats were randomized to a two-week treatment with either placebo, BAY 41-8543 (10 mg/kg per os (PO)) or intra-tracheal (IT) instillation (3 mg/kg or 1 mg/kg).Circulating concentrations of the drug 10 mg/kg PO and 3 mg/kg IT were comparable. BAY 41-8543 was detected in the lung tissue and broncho-alveolar fluid after IT delivery at higher concentrations than after PO administration. Systemic arterial pressure transiently decreased after oral BAY 41-8543 and was unaffected by intratracheal instillation of the drug. PO 10 mg/kg and IT 3 mg/kg regimens partially reversed pulmonary hypertension and improved heart function in MCT-injected rats. Minor efficacy was noted in rats treated IT with 1 mg/kg. The degree of pulmonary vascular remodeling was largely reversed in all treatment groups.Intratracheal administration of BAY 41-8543 reverses PAH and vascular structural remodeling in MCT-treated rats. Local lung delivery is not associated with systemic blood pressure lowering and represents thus a further development of PH treatment with sGC stimulators. Topics: Animals; Biopsy; Blood Pressure; Disease Models, Animal; Echocardiography; Hemodynamics; Hypertension, Pulmonary; Morpholines; Pyrimidines; Rats; Soluble Guanylyl Cyclase; Vascular Remodeling; Ventricular Remodeling | 2017 |
Effect of chronic sodium nitrite therapy on monocrotaline-induced pulmonary hypertension.
Pulmonary hypertension (PH) is a rare disorder that without treatment is progressive and often fatal within 3 years. The treatment of PH involves the use of a diverse group of drugs and lung transplantation. Although nitrite was once thought to be an inactive metabolite of endothelial-derived nitric oxide (NO), there is increasing evidence that nitrite may be useful in the treatment of PH, but the mechanism by which nitrite exerts its beneficial effect remains uncertain. The purpose of this study was to investigate the effect of chronic sodium nitrite treatment in a PH model in the rat. Following induction of PH with a single injection of monocrotaline, 60 mg; daily ip injections of sodium nitrite (3mg/kg) starting on day 14 and continuing for 21 days, resulted in a significantly lower pulmonary arterial pressure on day 35 when compared to values in untreated animals with monocrotaline-induced PH. In monocrotaline-treated rats, daily treatment with ip nitrite injections for 21 days decreased right ventricular mass and pathologic changes in small pulmonary arteries. Nitrite therapy did not change systemic arterial pressure or cardiac output when values were measured on day 35. The decreases in pulmonary arterial pressure in response to iv injections of sodium nitroprusside, sodium nitrite, and BAY 41-8543 were not different in rats with monocrotaline-induced pulmonary hypertension and rats with chronic nitrite therapy when compared to responses in animals in which pulmonary arterial pressure was increased with U46619. These findings are consistent with the hypothesis that the mechanisms that convert nitrite to vasoactive NO, activate soluble guanylyl cyclase and mediate the vasodilator response to NO or an NO derivative are not impaired. The present data are consistent with the results of a previous study in monocrotaline-induced PH in which systemic arterial pressure and cardiac output were not evaluated and are consistent with the hypothesis that nitrite is effective in the treatment of monocrotaline-induced PH in the rodent. Topics: Animals; Blood Pressure; Cardiac Output; Dose-Response Relationship, Drug; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Monocrotaline; Morpholines; Nitric Oxide; Nitroprusside; Pyrimidines; Rats; Rats, Sprague-Dawley; Sodium Nitrite; Tunica Media | 2012 |
sGC stimulation totally reverses hypoxia-induced pulmonary vasoconstriction alone and combined with dual endothelin-receptor blockade in a porcine model.
Stimulation of soluble guanylate cyclase (sGC) with BAY 41-8543 was hypothesized to attenuate acute hypoxic pulmonary vasoconstriction alone and combined with dual endothelin (ET)-receptor antagonist tezosentan.. Measurements were taken in 18 anaesthetized pigs with a mean ± SEM weight of 31.1 ± 0.4 kg, in normoxia (FiO(2)~0.21) and hypoxia (FiO(2)~0.10) without (control protocol, n = 6), and with right atrial infusion of BAY 41-8543 at 1, 3, 6, 9 and 12 μg min(-1) per kg (protocol 2, n = 6) or tezosentan at 5 mg kg(-1) followed by BAY 41-8543 at 1, 3 and 6 μg min(-1) per kg (protocol 3, n = 6).. Hypoxia (n = 18) increased (P < 0.001) mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR) by 14.2 ± 0.6 mmHg and 2.8 ± 0.3 WU respectively. During sustained hypoxia without treatment, MPAP and PVR remained stable. BAY 41-8543 (n = 6) dose-dependently decreased (P < 0.001) MPAP and PVR by 15.0 ± 1.2 mmHg and 4.7 ± 0.7 WU respectively. Tezosentan (n = 6) decreased (P < 0.001) MPAP and PVR by 11.8 ± 1.2 mmHg and 2.0 ± 0.2 WU, respectively, whereafter BAY 41-8543 (n = 6) further decreased (P < 0.001) MPAP and PVR by 6.6 ± 0.9 mmHg and 1.9 ± 0.4 WU respectively. Both BAY 41-8543 and tezosentan decreased (P < 0.001) systemic arterial pressure and systemic vascular resistance. Blood-O(2) consumption remained unaltered (P = ns) during all interventions.. BAY 41-8543 totally reverses the effects of acute hypoxia-induced pulmonary vasoconstriction, and enhances the attenuating effects of tezosentan, without affecting oxygenation. Thus, sGC stimulation, alone or combined with dual ET-receptor blockade, could offer a means to treat pulmonary hypertension related to hypoxia and potentially other causes. Topics: Animals; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Endothelin Receptor Antagonists; Enzyme Activators; Female; Guanylate Cyclase; Hypertension, Pulmonary; Hypoxia; Lung; Morpholines; Pyridines; Pyrimidines; Receptors, Endothelin; Swine; Tetrazoles; Vascular Resistance; Vasoconstriction; Vasodilator Agents | 2012 |
Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension.
Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impairments of the NO-sGC signaling pathway have been implicated in the pathogenesis of cardiovascular and other diseases. Direct stimulation of sGC represents a promising therapeutic strategy particularly for the treatment of pulmonary hypertension (PH), a disabling disease associated with a poor prognosis. Previous sGC stimulators such as the pyrazolopyridines BAY 41-2272 and BAY 41-8543 demonstrated beneficial effects in experimental models of PH, but were associated with unfavorable drug metabolism and pharmacokinetic (DMPK) properties. Herein we disclose an extended SAR exploration of this compound class to address these issues. Our efforts led to the identification of the potent sGC stimulator riociguat, which exhibits an improved DMPK profile and exerts strong effects on pulmonary hemodynamics and exercise capacity in patients with PH. Riociguat is currently being investigated in phase III clinical trials for the oral treatment of PH. Topics: Administration, Oral; Animals; Dogs; Drug Discovery; Female; Guanylate Cyclase; Hypertension, Pulmonary; Morpholines; Nitric Oxide; Pyrazoles; Pyridines; Pyrimidines; Rabbits; Rats; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase; Structure-Activity Relationship | 2009 |