bay-11-7082 and Skin-Neoplasms

bay-11-7082 has been researched along with Skin-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for bay-11-7082 and Skin-Neoplasms

ArticleYear
Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis.
    Experimental cell research, 2012, Oct-15, Volume: 318, Issue:17

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.

    Topics: Animals; Apoptosis; Cell Movement; Cell Nucleus; Cell Transformation, Neoplastic; Cells, Cultured; Dipeptides; DNA, Mitochondrial; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mitochondria; Mutation; NF-kappa B; Nitriles; Phenotype; Protease Inhibitors; Real-Time Polymerase Chain Reaction; Skin Neoplasms; Sulfones

2012
Tumor necrosis factor-alpha-nuclear factor-kappa B-signaling enhances St2b2 expression during 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperplasia.
    Biological & pharmaceutical bulletin, 2011, Volume: 34, Issue:2

    The mouse cholesterol sulfotransferase St2b2 contributes to epidermal differentiation by biosynthesizing cholesterol sulfate (CS) from cholesterol in the epidermis. 12-O-Tetradecanoylphorbol-13-acetate (TPA) causes epidermal hyperplasia, an abnormal increase in epidermal cell numbers resulting from aberrant cell differentiation and an increase in St2b2 protein levels. The mechanisms underlying enhanced St2b2 expression and the pathophysiologic significance of the increased expression are unclear, however. To verify whether increased St2b2 levels are necessary for TPA-induced epidermal hyperplasia, the effects of St2b2-specific small hairpin RNA (St2b2-shRNA) on hyperplasia were examined in mice. St2b2-shRNA clearly suppressed TPA-induced epidermal hyperplasia and the expression of a marker of epidermal differentiation, involucrin (INV). Interestingly, treating mouse epidermal cells with tumor necrosis factor-alpha (TNFα) increased St2b2 expression. Furthermore, treatment with TNFα-siRNA or anti-TNF receptor antibodies reduced the TPA-induced enhancement of St2b2 expression. Treatment with BAY 11-7082, a specific inhibitor of nuclear factor-kappa B (NF-κB), diminished TPA-induced St2b2 expression. These results suggested that enhancement of St2b2 expression by TPA treatment occurs mainly through the TNFα-NF-κB inflammatory signaling pathway, which in turn leads to increased CS concentrations in epidermal cells and hyperplasia.

    Topics: Animals; Antibodies; Cholesterol Esters; Epidermis; Female; Hyperplasia; Inflammation; Mice; Mice, Inbred Strains; NF-kappa B; Nitriles; Protein Precursors; Receptors, Tumor Necrosis Factor; RNA, Small Interfering; Signal Transduction; Skin Neoplasms; Sulfones; Sulfotransferases; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha

2011