bay-11-7082 and Pneumonia

bay-11-7082 has been researched along with Pneumonia* in 3 studies

Other Studies

3 other study(ies) available for bay-11-7082 and Pneumonia

ArticleYear
Rho-kinase inhibitor treatment prevents pulmonary inflammation and coagulation in lipopolysaccharide-induced lung injury.
    Thrombosis research, 2017, Volume: 150

    In the pathogenesis of sepsis-induced acute lung injury (ALI), the crosstalk between inflammation and coagulation plays a pivotal role. The aim of this study was to investigate the role of Rho kinase (ROCK) inhibitor in alleviating pulmonary inflammation and coagulation in lipopolysaccharide (LPS)-induced acute lung injury (ALI) models.. In the in vivo study, mice were randomized to four different groups: Control, Y-27632 (Y), LPS, and LPS+Y-27632 (LPS+Y). ALI was induced by intranasally administering LPS (10μg in 50μL PBS). Y-27632 (10mg/kg body weight,) was injected intraperitoneally at 18h and 1h before LPS challenge. Mice were euthanized at 3h or 8h post LPS challenge (N=8 per group). In the in vitro study, human pulmonary microvascular endothelial cells (HPMECs) were incubated with LPS alone (1μg/mL) or in combination with 10μM Y-27632 or 50μM BAY11-7082. Cells were pretreated with the inhibitors 30min before exposure to LPS. Three hours later, cells were isolated for subsequent analysis.. The myeloperoxidase (MPO) activity and fibrinogen deposits in the lung tissue significantly decreased and the lung damage in ALI mouse was attenuated. Pretreatment with Y-27632 markedly reduced the LPS-induced expression of interleukins 1β and 6, and the activation of nuclear factor (NF)-κB. Furthermore, ROCK inhibitor treatment antagonized the expression of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 in lung tissue and HPMECs.. ROCK inhibition protects against the endotoxin-induced pulmonary inflammation and coagulation via NF-kappaB pathway modulation.

    Topics: Acute Lung Injury; Amides; Animals; Blood Coagulation; Cell Line; Humans; Interleukins; Lipopolysaccharides; Lung; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Nitriles; Pneumonia; Pyridines; rho-Associated Kinases; Sulfones

2017
Synthetic double-stranded RNA induces interleukin-32 in bronchial epithelial cells.
    Experimental lung research, 2015, Volume: 41, Issue:6

    Interleukin (IL)-32 is a novel cytokine and is involved in the pathogenesis of various inflammatory diseases, including asthma and COPD. However, the regulatory mechanisms of IL-32 expression and its precise pathogenic role remain to be defined. Given that viral infections are known to potentially cause and exacerbate airway inflammation, in this study, we investigated the expression of IL-32 induced by synthetic double-stranded (ds) RNA, and its signaling mechanisms involved.. Bronchial epithelial cells were stimulated with synthetic dsRNA poly I:C. The levels of IL-32 expression were analyzed using real-time PCR and ELISA. The involvement of transforming growth factor β-activated kinase 1 (TAK1) and a subunit of nuclear factor-κB (NF-κB), p65 was determined by western blot analyses. TAK1 inhibitor, 5Z-7-Oxozeaenol and NF-κB inhibitor, BAY 11-7082 were added to the culture to identify key signaling events leading to the expression of IL-32. Finally, the effect of short interfering RNAs (siRNAs) targeting TAK1 and p65 was investigated.. dsRNA significantly induced IL-32 gene and protein expression, concomitant with activation of TAK1 and p65. Pretreatment of 5Z-7-Oxozeaenol diminished dsRNA-induced phosphorylation of NF-κB. Both 5Z-7-Oxozeaenol and BAY 11-7082 significantly abrogated dsRNA-induced IL-32 production. Moreover, transfection of the cells with siRNAs targeting TAK1 and p65 inhibited the expression of IL-32.. The expression of IL-32 is induced by dsRNA via the TAK1-NF-κB signaling pathway in bronchial epithelial cells. IL-32 is involved in the pathogenesis of airway inflammation, and may be a novel therapeutic target for airway inflammatory diseases.

    Topics: Bronchi; Cells, Cultured; Epithelial Cells; Humans; I-kappa B Proteins; Interleukins; Lactones; MAP Kinase Kinase Kinases; NF-kappa B; Nitriles; Phosphorylation; Pneumonia; Resorcinols; RNA, Double-Stranded; Signal Transduction; Sulfones; Transcription Factor RelA

2015
Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis.
    Journal of leukocyte biology, 2007, Volume: 82, Issue:4

    Hydrogen sulfide (H(2)S) is recognized increasingly as a proinflammatory mediator in various inflammatory conditions. Here, we have investigated the role of H(2)S in regulating expression of some endothelial adhesion molecules and recruitment of leukocytes to inflamed sites in sepsis. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with saline (i.p.), DL-propargylglycine (PAG; 50 mg/kg, i.p.), an inhibitor of H(2)S formation or NaHS (10 mg/kg, i.p.), an H(2)S donor. PAG was administered 1 h before or after the induction of sepsis, and NaHS was given at the same time of CLP. Using intravital microcopy, we found that in sepsis, prophylactic and therapeutic administration of PAG reduced leukocyte rolling and adherence significantly in mesenteric venules coupled with decreased mRNA and protein levels of adhesion molecules (ICAM-1, P-selectin, and E-selectin) in lung and liver. In contrast, injection of NaHS up-regulated leukocyte rolling and attachment significantly, as well as tissue levels of adhesion molecules in sepsis. Conversely, normal mice were given NaHS (10 mg/kg, i.p.) to induce lung inflammation, with or without NF-kappaB inhibitor BAY 11-7082 pretreatment. NaHS treatment enhanced the level of adhesion molecules and neutrophil infiltration in lung. These alterations were reversed by pretreatment with BAY 11-7082. Moreover, expression of CXCR2 in neutrophils obtained from H(2)S-treated mice was up-regulated significantly, leading to an obvious elevation in MIP-2-directed migration of neutrophils. Therefore, H(2)S acts as an important endogenous regulator of leukocyte activation and trafficking during an inflammatory response.

    Topics: Alkynes; Animals; Cell Adhesion; Cell Adhesion Molecules; Chemokine CXCL2; Enzyme Inhibitors; Glycine; Hydrogen Sulfide; Inflammation Mediators; Leukocyte Rolling; Liver; Lung; Male; Mesenteric Veins; Mice; Neutrophil Infiltration; Neutrophils; NF-kappa B; Nitriles; Pneumonia; Receptors, Interleukin-8B; Sepsis; Sulfides; Sulfones; Up-Regulation

2007