bay-11-7082 has been researched along with Myocardial-Infarction* in 2 studies
2 other study(ies) available for bay-11-7082 and Myocardial-Infarction
Article | Year |
---|---|
Inhibition of Dectin-1 in mice ameliorates cardiac remodeling by suppressing NF-κB/NLRP3 signaling after myocardial infarction.
The myocardial inflammatory response is a consequence of myocardial infarction (MI), which may deteriorate cardiac remodeling and lead to dysfunction in the heart post-MI. Dectin-1 is a c-type lectin, which has been shown to regulate innate immune responses to pathogens. However, the role of Dectin-1 in the heart diseases remains largely unknown. In this study, we aimed to investigate the effects of Dectin-1 on cardiac remodeling post-MI. We found that cardiac Dectin-1 mRNA and protein expressions were significantly elevated in C57BL/6 mice after MI. In vitro, hypoxia induced cardiomyocyte injury in parallel with increased Dectin-1 protein expression. Knockdown of Dectin-1 remarkably attenuated cardiomyocyte death under hypoxia and lipopolysaccharide (LPS) stimulation. In vivo administration of adeno-associated virus serotype 9 mediated silencing of Dectin-1, which significantly decreased cardiac fibrosis, dilatation, and improved cardiac function in the mice post-MI. At the molecular level, downregulation of Dectin-1 dramatically suppressed up-regulation of nuclear factor-κB (NF-κB), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), and the inflammatory genes involved in fibrogenesis and cardiac remodeling after MI. Furthermore, treatment with BAY11-7082, an inhibitor of NF-κB, repressed the activation of NF-κB, and attenuated LPS induced elevation of NLRP3 and cell death in cardiomyocytes. Collectively, upregulation of Dectin-1 in cardiomyocytes post-MI contributes to cardiac remodeling and cardiac dysfunction at least partially by activating NF-κB and NLRP3. This study identified Dectin-1 as a promising therapeutic target for ischemic heart disease. Topics: Animals; Disease Models, Animal; Down-Regulation; Female; Gene Knockdown Techniques; Humans; Lectins, C-Type; Lipopolysaccharides; Male; Mice; Myocardial Infarction; Myocardium; Myocytes, Cardiac; NF-kappa B; Nitriles; NLR Family, Pyrin Domain-Containing 3 Protein; Primary Cell Culture; RNA, Small Interfering; Signal Transduction; Sulfones; Up-Regulation; Ventricular Remodeling | 2020 |
NSAIDs diclofenac, indomethacin, and meloxicam highly upregulate expression of ICAM-1 and COX-2 induced by X-irradiation in human endothelial cells.
It is well known that radiation exposure to the heart and the use of non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of myocardial infarction (MI). Some NSAIDs are also known to act synergistically with ionizing radiation and have radio-sensitizing effects in radiotherapy. These evidences suggest that NSAIDs may affect the risk of MI after radiation exposure to the heart. In the present study, we investigated effects of NSAIDs on radiation-induced expression of cell adhesion molecules and COX-2, which are associated with inflammation and an increased risk of MI, in human endothelial cells.. Effects of NSAIDs on radiation-induced expression of ICAM-1, VCAM-1, E-selectin, and COX-2 were investigated in human umbilical vein endothelial cells (HUVECs). As NSAIDs, diclofenac, etodolac, indomethacin, ketoprofen, meloxicam, and rofecoxib were used.. Irradiation with 10 Gy increased expression of ICAM-1 and COX-2, but it did not affect expression of VCAM-1 or E-selectin. All the NSAIDs upregulated radiation-induced expression of ICAM-1 and COX-2. The extent of upregulation varied depending on the types of NSAIDs. Indomethacin, diclofenac, and meloxicam highly upregulated radiation-induced expression of ICAM-1 and COX-2. The extent of upregulation was not related to the degree of COX-2 selectivity. An NF-κB inhibitor BAY 11-7082 suppressed radiation-induced expression of ICAM-1, but it did not suppress upregulated expression of ICAM-1 or COX-2 by combination treatment with X-irradiation and meloxicam, suggesting the existence of NF-κB-independent pathways for ICAM-1 and COX-2 induction.. Indomethacin, diclofenac, and meloxicam highly upregulated radiation-induced expression of ICAM-1 and COX-2 in HUVECs, which suggests that use of these NSAIDs may increase the effects of ionizing radiation and affect the risk of MI after radiation exposure to the heart. Topics: Anti-Inflammatory Agents, Non-Steroidal; Contraindications; Cyclooxygenase 2; Diclofenac; E-Selectin; Heart; Human Umbilical Vein Endothelial Cells; Humans; Indomethacin; Intercellular Adhesion Molecule-1; Meloxicam; Myocardial Infarction; Myocardium; NF-kappa B; Nitriles; Risk Factors; Sulfones; Thiazines; Thiazoles; Up-Regulation; Vascular Cell Adhesion Molecule-1 | 2016 |