bay-11-7082 and Lymphoma--B-Cell

bay-11-7082 has been researched along with Lymphoma--B-Cell* in 2 studies

Other Studies

2 other study(ies) available for bay-11-7082 and Lymphoma--B-Cell

ArticleYear
The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines.
    Cancer research, 2007, Mar-15, Volume: 67, Issue:6

    Bortezomib is a proteasome inhibitor with proven efficacy in multiple myeloma and non-Hodgkin's lymphoma. This study reports the effects of bortezomib in B-cell lymphoma cell lines with differing sensitivity to bortezomib to investigate factors that influence sensitivity. Bortezomib induced a time- and concentration-dependent reduction in cell viability in five lymphoma cell lines, with EC(50) values ranging from 6 nmol/L (DHL-7 cells) to 25 nmol/L (DHL-4 cells) after 72 h. Bortezomib cytotoxicity was independent of p53 function, as all cell lines exhibited mutations by sequence analysis. The difference in sensitivity was not explained by proteasome or nuclear factor-kappaB (NF-kappaB) inhibition as these were similar in the most and least sensitive cells. NF-kappaB inhibition was less marked than that of a specific NF-kappaB inhibitor, Bay 11-7082. Cell cycle analysis showed a marked G(2)-arrested population in the least sensitive DHL-4 line only, an effect that was not present with Bay 11-7082 treatment. Conversely, in DHL-7 cells, bortezomib treatment resulted in cells moving into an aberrant mitosis, indicative of mitotic catastrophe that may contribute to increased sensitivity to bortezomib. These studies show that although bortezomib treatment had similar effects on apoptotic and NF-kappaB signaling pathways in these cell lines, different cell cycle effects were observed and induction of a further mechanism of cell death, mitotic catastrophe, was observed in the more sensitive cell line, which may provide some pointers to the difference in sensitivity between cell lines. An improved understanding of how DHL-7 cells abrogate the G(2)-M cell cycle checkpoint may help identify targets to increase the efficacy of bortezomib.

    Topics: Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Caspases; Cell Cycle Proteins; Cell Line, Tumor; Enzyme Activation; Humans; Lymphoma, B-Cell; Mitosis; NF-kappa B; Nitriles; Protease Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Sulfones; Tumor Suppressor Protein p53

2007
Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis.
    Journal of immunology (Baltimore, Md. : 1950), 2003, Jul-01, Volume: 171, Issue:1

    Constitutive activation of the NF-kappaB has been documented to be involved in the pathogenesis of many human malignancies, including hemopoietic neoplasms. In this study, we examined the status of NF-kappaB in two non-Hodgkin's lymphoma cell lines derived from mantle cell lymphoma (MCL) samples and in patient MCL biopsy specimens by EMSA and confocal microscopic analysis. We observed that NF-kappaB is constitutively activated in both the MCL cell lines and in the MCL patient biopsy cells. Since NF-kappaB has been shown to play an important role in a variety of cellular processes, including cell cycle regulation and apoptosis, targeting the NF-kappaB pathways for therapy may represent a rational approach in this malignancy. In the MCL cell lines, inhibition of constitutive NF-kappaB by the proteasome inhibitor PS-341 or a specific pIkappaBalpha inhibitor, BAY 11-7082, led to cell cycle arrest in G(1) and rapid induction of apoptosis. Apoptosis was associated with the down-regulation of bcl-2 family members bcl-x(L) and bfl/A1, and the activation of caspase 3, that mediates bcl-2 cleavage, resulting in the release of cytochrome c from the mitochondria. PS-341or BAY 11-induced G(1) cell cycle arrest was associated with the inhibition of cyclin D1 expression, a molecular genetic marker of MCL. These studies suggest that constitutive NF-kappaB expression plays a key role in the growth and survival of MCL cells, and that PS-341 and BAY 11 may be useful therapeutic agents for MCL, a lymphoma that is refractory to most current chemotherapy regimens.

    Topics: Antineoplastic Agents; Apoptosis; B-Lymphocyte Subsets; bcl-X Protein; Biopsy; Boronic Acids; Bortezomib; Cell Cycle; Growth Inhibitors; Humans; Hydrolysis; I-kappa B Proteins; Lymphoma, B-Cell; Lymphoma, Mantle-Cell; Minor Histocompatibility Antigens; NF-kappa B; NF-KappaB Inhibitor alpha; Nitriles; Organic Chemicals; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Sulfones; Tumor Cells, Cultured

2003