bay-11-7082 and Lung-Neoplasms

bay-11-7082 has been researched along with Lung-Neoplasms* in 9 studies

Other Studies

9 other study(ies) available for bay-11-7082 and Lung-Neoplasms

ArticleYear
Semaphorin4A promotes lung cancer by activation of NF-κB pathway mediated by PlexinB1.
    PeerJ, 2023, Volume: 11

    Lung cancer (LC) is the most prevalent cancer with a poor prognosis. Semaphorin4A (Sema4A) is important in many physiological and pathological processes. This study aimed to explore the role and mechanism of Sema4A in LC.. Firstly, Sema4A expression was analyzed by the available dataset and detected in human normal bronchial epithelial cell line (HBE) and LC cell line (NCI-H460). Then, LC cells were transfected with Sema4A siRNA, and the cells were stimulated by PlexinB1, PlexinB2, PlexinD1 blocking antibodies, IgG antibody, BAY 11-7082 (an inhibitor for NF-κB pathway) and Sema4A-Fc protein, alone or in combination. After transfection, PlexinB1 mRNA expression was analyzed. Next, the biological functions, including proliferative, migratory, invasive abilities and viability of the cells were detected by colony formation, scratch, Transwell and MTT assays, respectively. NF-κB, Stat3 and MAPK protein expressions were determined by western blot. Furthermore, the secretion of IL-6 in LC cells was tested by ELISA.. Sema4A was highly expressed in LC tissues and cells, could activate the NF-κB pathway and upregulate PlexinB1 mRNA expression. Furthermore, we observed that Sema4A knockdown suppressed the biological functions of NCI-H460 cells, while Sema4A-Fc protein reversed the situation. However, Sema4A-induced biological functions and activation in the NF-κB pathway were inhibited by PlexinB1 blocking antibody. Consistently, Sema4A promoted IL-6 production, which was down-regulated by PlexinB1 blocking antibody and BAY 11-7082.. Sema4A may facilitate LC development via the activation of the NF-κB pathway mediated by PlexinB1, suggesting that Sema4A would be a novel therapeutic target for LC treatment.

    Topics: Humans; Interleukin-6; Lung Neoplasms; NF-kappa B; RNA, Messenger; Semaphorins

2023
Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells.
    The Journal of biological chemistry, 2017, 02-10, Volume: 292, Issue:6

    Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases proliferation in adenocarcinoma cells. The chemicals that reduce claudin-2 expression may have anti-cancer effects, but such therapeutic medicines have not been developed. We found that azacitidine (AZA), a DNA methylation inhibitor, and trichostatin A (TSA) and sodium butyrate (NaB), histone deacetylase (HDAC) inhibitors, decrease claudin-2 levels. The effect of AZA was mediated by the inhibition of phosphorylated Akt and NF-κB. LY-294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and BAY 11-7082, an NF-κB inhibitor, decreased claudin-2 levels. The reporter activity of claudin-2 was decreased by AZA and LY-294002, which was blocked by the mutation in a putative NF-κB-binding site. NF-κB bound to the promoter region of claudin-2, which was inhibited by AZA and LY-294002. AZA is suggested to decrease the claudin-2 mRNA level mediated by the inhibition of a PI3K/Akt/NF-κB pathway. TSA and NaB did not change phosphorylated Akt and NF-κB levels. Furthermore, these inhibitors did not change the reporter activity of claudin-2 but decreased the stability of claudin-2 mRNA mediated by the elevation of miR-497 microRNA. The binding of histone H3 to the promoter region of miR-497 was inhibited by TSA and NaB, whereas that of claudin-2 was not. These results suggest that HDAC inhibitors decrease claudin-2 levels mediated by the elevation of miR-497 expression. Cell proliferation was additively decreased by AZA, TSA, and NaB, which was partially rescued by ectopic expression of claudin-2. We suggest that epigenetic inhibitors suppress the abnormal proliferation of lung adenocarcinoma cells highly expressing claudin-2.

    Topics: A549 Cells; Adenocarcinoma; Adenocarcinoma of Lung; Azacitidine; Butyric Acid; Cell Proliferation; Chromones; Claudin-2; Down-Regulation; Epigenesis, Genetic; Humans; Hydroxamic Acids; Lung Neoplasms; MicroRNAs; Morpholines; Nitriles; RNA, Messenger; Signal Transduction; Sulfones

2017
Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition.
    Oncotarget, 2016, Sep-20, Volume: 7, Issue:38

    Long non-coding RNAs (lncRNAs) have emerged recently as key regulators of tumor development and progression. Our previous study identified an NF-KappaB interacting lncRNA (NKILA) which was negatively correlated with breast cancer metastasis and patient prognosis. However, its clinical significance and potential role in Tongue squamous cell carcinoma (TSCC) remain unclear. Here we show that NKILA is down-regulated in TSCC cancer tissues than that in matched adjacent noncancerous tissues. And low NKILA expression in TSCC is significantly correlated with tumor metastasis and poor patient prognosis. In vitro, overexpression of NKILA decreases TSCC cells migration and invasion. Mechanistic study shows that NKILA inhibits the phosphorylation of IκBα and NF-κB activation as well as the induction of the epithelial-mesenchymal transition (EMT) process. Ectopic expression of NKILA in Tscca cells inhibits NF-κB activator TNF-α-promoted cell migration and invasion, while applying NF-κB inhibitor Bay-117082 or JSH-23 in NKILA silenced CAL27 cells reverses cell migration capacity to lower level. In vivo experimental metastasis model also demonstrates NKILA inhibits lung metastasis of NOD/SCID mice with TSCC tumors. These results suggested that NKILA is a vital determinant of TSCC migration and invasion and NF-κB signaling pathway mediates this effect. Given the above mentioned function of NKILA, it could act as a potential predictor for overall survival in patients with TSCC and a potential therapeutic target for TSCC intervention.

    Topics: Aged; Animals; Carcinoma, Squamous Cell; Cell Movement; Epithelial-Mesenchymal Transition; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Lung Neoplasms; Male; Mice; Mice, Inbred NOD; Mice, SCID; Middle Aged; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Transplantation; NF-kappa B; Nitriles; Phenylenediamines; Prognosis; RNA, Long Noncoding; Sulfones; Tongue Neoplasms

2016
FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction.
    Oncogene, 2015, May-07, Volume: 34, Issue:19

    Fragile histidine triad (FHIT) loss by the two-hit mechanism of loss of heterozygosity and promoter hypermethylation commonly occurrs in non-small cell lung cancer (NSCLC) and may confer cisplatin resistance in NSCLC cells. However, the underlying mechanisms of FHIT loss in cisplatin resistance and the response to cisplatin-based chemotherapy in NSCLC patients have not yet been reported. In the present study, inhibition concentration of 50% cell viability induced by cisplatin (IC50) and soft agar growth and invasion capability were increased and decreased in FHIT-knockdown and -overexpressing cells, respectively. Mechanistically, Slug transcription is upregulated by AKT/NF-κB activation due to FHIT loss and, in turn, Slug suppresses PUMA expression; this decrease of PUMA by FHIT loss is responsible for cisplatin resistance. In addition, cisplatin resistance due to FHIT loss can be conquered by AKT inhibitor-perifosine in xenograft tumors. Among NSCLC patients, low FHIT, high p-AKT, high Slug and low PUMA were correlated with shorter overall survival, relapse-free survival and poorer response to cisplatin-based chemotherapy. Therefore, the AKT inhibitor perifosine might potentially overcome the resistance to cisplatin-based chemotherapy in NSCLC patients with low-FHIT tumors, and consequently improve the outcome.

    Topics: Acid Anhydride Hydrolases; Adult; Aged; Aged, 80 and over; Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Non-Small-Cell Lung; Cisplatin; Drug Resistance, Neoplasm; Female; Humans; Lung Neoplasms; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Middle Aged; Neoplasm Proteins; Neoplasm Transplantation; Nitriles; Phosphorylcholine; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; RNA Interference; RNA, Small Interfering; Snail Family Transcription Factors; Sulfones; Transcription Factor RelA; Transcription Factors; Transplantation, Heterologous; Treatment Outcome

2015
Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.
    International journal of oncology, 2014, Volume: 44, Issue:4

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer.

    Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; ATP Binding Cassette Transporter, Subfamily B; Autophagy; Beclin-1; Cell Line, Tumor; Coumarins; Drug Resistance, Neoplasm; Etoposide; Furans; Glycosides; Humans; Lung Neoplasms; Membrane Proteins; Microfilament Proteins; Nitriles; Promoter Regions, Genetic; RNA Interference; RNA, Small Interfering; Sirolimus; Sulfones; Transcription Factor RelA; Transcription, Genetic

2014
Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.
    Cancer science, 2014, Volume: 105, Issue:9

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.

    Topics: Antineoplastic Agents; Ataxia Telangiectasia Mutated Proteins; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; bcl-X Protein; Camptothecin; Cell Line, Tumor; Cisplatin; Drug Resistance, Neoplasm; Gene Expression; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Interleukin-6; Lung Neoplasms; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; NF-kappa B; Nitriles; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-bcl-2; Pyridines; Sulfones

2014
The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma.
    Cancer biology & therapy, 2012, Volume: 13, Issue:8

    The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G 1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11-7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer.

    Topics: Aminoquinolines; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Silencing; Humans; Lung Neoplasms; NF-kappa B; Nitriles; Pyrimidines; rac1 GTP-Binding Protein; Sulfones; Transcription, Genetic

2012
Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma.
    Cancer discovery, 2011, Volume: 1, Issue:3

    Lung adenocarcinoma is a leading cause of cancer death worldwide. We recently showed that genetic inhibition of the NF-κB pathway affects both the initiation and the maintenance of lung cancer, identifying this pathway as a promising therapeutic target. In this investigation, we tested the efficacy of small-molecule NF-κB inhibitors in mouse models of lung cancer. In murine lung adenocarcinoma cell lines with high NF-κB activity, the proteasome inhibitor bortezomib efficiently reduced nuclear p65, repressed NF-κB target genes, and rapidly induced apoptosis. Bortezomib also induced lung tumor regression and prolonged survival in tumor-bearing Kras(LSL-G12D/wt);p53(flox/flox) mice but not in Kras(LSL-G12D/wt) mice. After repeated treatment, initially sensitive lung tumors became resistant to bortezomib. A second NF-κB inhibitor, Bay-117082, showed similar therapeutic efficacy and acquired resistance in mice. Our results using preclinical mouse models support the NF-κB pathway as a potential therapeutic target for a defined subset of lung adenocarcinoma.. Using small-molecule compounds that inhibit NF-κB activity, we provide evidence that NF-κB inhibition has therapeutic efficacy in the treatment of lung cancer. Our results also illustrate the value of mouse models in validating new drug targets in vivo and indicate that acquired chemoresistance may later influence bortezomib treatment in lung cancer.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Lung Neoplasms; Mice; Mice, 129 Strain; NF-kappa B; Nitriles; Pyrazines; Signal Transduction; Sulfones; Survival Rate; Transcription Factor RelA

2011
MKP1 repression is required for the chemosensitizing effects of NF-kappaB and PI3K inhibitors to cisplatin in non-small cell lung cancer.
    Cancer letters, 2009, Dec-28, Volume: 286, Issue:2

    Treatment of non-small cell lung cancer (NSCLC) with cisplatin has a level of antitumor activity still modest. We have shown previously that MKP1/DUSP1 inhibits cisplatin-induced apoptosis in NSCLC cells and is overexpressed in tumors from most patients with stage I-II NSCLC. Here, using different NSCLC cell lines we found that MKP1 and NF-kappaB are differentially expressed. We studied whether targeting MKP1, NF-kappaB or both affects cisplatin-induced cell death. MKP1 is expressed in H460 and H727 cells. H727 and H1299 cells showed constitutive phosphorylation of Akt and increased NF-kappaB activity than did H460 cells. H460-MKP1-siRNA-expressing cells (but not H727-MKP1-siRNA or H1299-MKP1-siRNA cells) exhibit a marked increase in cisplatin response compared with parental cells. Treatment with the PI3K inhibitor LY294002 or the NF-kappaB inhibitor BAY11-7082 enhanced cisplatin antitumor activity in parental H1299 cells but only weakly affected responses of H727 and H460 cells. MKP1-siRNA expression enhanced the chemosensitization effect of LY294002 and BAY11-7082 on H727 and H460 cells. Additionally, NSCLC cell lines with higher NF-kappaB-constitutive activation were the most sensitive to PS-341 (Bortezomib), a non-specific NF-kappaB inhibitor. This finding suggests the proteasome as a suitable strategy in treating NSCLC tumors with high constitutive NF-kappaB activity. Altogether, these results showed that either an activated PI3K/Akt/NF-kappaB pathway and/or high MKP1 was linked to reduced sensitivity to cisplatin in NSCLC cells. Inhibition of NF-kappaB or PI3K potently enhanced cisplatin cytotoxicity in cells with endogenous or genetically induced low MKP1 levels. These findings support the potential improvement in cisplatin responses by co-targeting NF-kappaB or Akt and MKP1.

    Topics: Antineoplastic Agents; Blotting, Western; Boronic Acids; Bortezomib; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Survival; Chromones; Cisplatin; Dual Specificity Phosphatase 1; Humans; Immunohistochemistry; JNK Mitogen-Activated Protein Kinases; Lung Neoplasms; Morpholines; NF-kappa B; Nitriles; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyrazines; RNA Interference; Signal Transduction; Sulfones

2009