bay-11-7082 has been researched along with Carcinogenesis* in 4 studies
4 other study(ies) available for bay-11-7082 and Carcinogenesis
Article | Year |
---|---|
PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression.
Dysregulation of PARP10 has been implicated in various tumor types and plays a vital role in delaying hepatocellular carcinoma (HCC) progression. However, the mechanisms controlling the expression and activity of PARP10 in HCC remain mostly unknown. The crosstalk between PLK1, PARP10, and NF-κB pathway in HCC was determined by performing different in vitro and in vivo assays, including mass spectrometry, kinase, MARylation, chromatin immunoprecipitation, and luciferase reporter measurements. Functional examination was performed by using small chemical drug, cell culture, and mice HCC models. Correlation between PLK1, NF-κB, and PARP10 expression was determined by analyzing clinical samples of HCC patients with using immunohistochemistry. PLK1, an important regulator for cell mitosis, directly interacts with and phosphorylates PARP10 at T601. PARP10 phosphorylation at T601 significantly decreases its binding to NEMO and disrupts its inhibition to NEMO ubiquitination, thereby enhancing the transcription activity of NF-κB toward multiple target genes and promoting HCC development. In turn, NF-κB transcriptionally inhibits the PARP10 promoter activity and leads to its downregulation in HCC. Interestingly, PLK1 is mono-ADP-ribosylated by PARP10 and the MARylation of PLK1 significantly inhibits its kinase activity and oncogenic function in HCC. Clinically, the expression levels of PLK1 and phosphor-p65 show an inverse correlation with PARP10 expression in human HCC tissues. These findings are the first to uncover a PLK1/PARP10/NF-κB signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with NF-κB antagonists, as potential effective therapeutics for PARP10-expressing HCC. Topics: Animals; Antineoplastic Agents; Carcinogenesis; Carcinoma, Hepatocellular; Cell Cycle Proteins; Disease Progression; Feedback, Physiological; Female; HEK293 Cells; Hepatectomy; Humans; Kaplan-Meier Estimate; Liver; Liver Neoplasms; Male; Mice; Middle Aged; Mutagenesis, Site-Directed; Neoplasm Staging; Nitriles; Phosphorylation; Polo-Like Kinase 1; Poly(ADP-ribose) Polymerases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Pteridines; Signal Transduction; Staurosporine; Sulfones; Transcription Factor RelA; Xenograft Model Antitumor Assays | 2020 |
Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma.
EBV-associated gastric carcinoma (EBVaGC) is a specific subgroup of gastric carcinoma, and the multifunctional transcriptional factor NF-κB may contribute to its tumorigenesis. In this study, we comprehensively characterized NF-κB signaling in EBVaGC using qRT-PCR, western blot, immunofluorescence assays, ELISA, and immunohistochemistry staining. NF-κB-signaling inhibitors may inhibit the growth of EBVaGC cells and induce significant apoptosis. IκBα is a key regulatory molecule, and repression of IκBα can contribute to aberrant NF-κB activation. Overexpression of LMP1 and LMP2A in the EBV-negative GC cell line SGC7901 could inhibit the expression of IκBα and induce NF-κB activation. These findings indicate that the canonical NF-κB signal is constitutively activated and plays an important role in EBVaGC tumorigenesis. Topics: Carcinogenesis; Carcinoma; Cell Line, Tumor; Cell Proliferation; Epstein-Barr Virus Infections; Epstein-Barr Virus Nuclear Antigens; Gene Expression Regulation, Neoplastic; Herpesvirus 4, Human; Humans; Leupeptins; NF-kappa B; NF-KappaB Inhibitor alpha; Nitriles; RNA, Small Interfering; Signal Transduction; Stomach Neoplasms; Sulfones; TNF Receptor-Associated Factor 1; Viral Matrix Proteins | 2019 |
In Vivo Short-Term Topical Application of BAY 11-7082 Prevents the Acidic Bile-Induced mRNA and miRNA Oncogenic Phenotypes in Exposed Murine Hypopharyngeal Mucosa.
Bile-containing gastroesophageal reflux may promote cancer at extraesophageal sites. Acidic bile can accelerate NF-κB activation and molecular events, linked to premalignant changes in murine hypopharyngeal mucosa (HM). We hypothesize that short-term in vivo topical application of NF-κB inhibitor BAY 11-7082 can prevent acidic bile-induced early preneoplastic molecular events, suggesting its potential role in disease prevention.. We topically exposed HM (C57Bl/6j wild-type) to a mixture of bile acids at pH 3.0 with and without BAY 11-7082 3 times/day for 7 days. We used immunofluorescence, Western blotting, immunohistochemistry, quantitative polymerase chain reaction, and polymerase chain reaction microarrays to identify NF-κB activation and its associated oncogenic mRNA and miRNA phenotypes, in murine hypopharyngeal cells in vitro and in murine HM in vivo.. Short-term exposure of HM to acidic bile is a potent stimulus accelerating the expression of NF-κB signaling (70 out of 84 genes) and oncogenic molecules. Topical application of BAY 11-7082 sufficiently blocks the effect of acidic bile. BAY 11-7082 eliminates NF-κB activation in regenerating basal cells of acidic bile-treated HM and prevents overexpression of molecules central to head and neck cancer, including bcl-2, STAT3, EGFR, TNF-α, and WNT5A. NF-κB inhibitor reverses the upregulated "oncomirs" miR-155 and miR-192 and the downregulated "tumor suppressors" miR-451a and miR-375 phenotypes in HM affected by acidic bile.. There is novel evidence that acidic bile-induced NF-κB-related oncogenic mRNA and miRNA phenotypes are generated after short-term 7-day mucosal exposure and that topical mucosal application of BAY 11-7082 can prevent the acidic bile-induced molecular alterations associated with unregulated cell growth and proliferation of hypopharyngeal cells. Topics: Animals; Bile; Bile Acids and Salts; Carcinogenesis; Cell Proliferation; Down-Regulation; Female; Gastroesophageal Reflux; Head and Neck Neoplasms; Hypopharynx; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Mucous Membrane; NF-kappa B; Nitriles; Oncogenes; Phenotype; RNA, Messenger; Signal Transduction; Sulfones; Up-Regulation | 2018 |
NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway.
Colorectal cancer (CRC) remains a common and deadly cancer due to metastatic disease. Activin and TGFB (TGFβ) signaling are growth suppressive pathways that exert non-canonical pro-metastatic effects late in CRC carcinogenesis. We have recently shown that activin downregulates p21 via ubiquitination and degradation associated with enhanced cellular migration independent of SMADs. To investigate the mechanism of metastatic activin signaling, we examined activated NFkB signaling and activin ligand expression in CRC patient samples and found a strong correlation. We hypothesize that activation of the E3 ubiquitin ligase MDM2 by NFkB leads to p21 degradation in response to activin treatment. To dissect the link between activin and pro-carcinogenic NFkB signaling and downstream targets, we found that activin but not TGFB induced activation of NFkB leading to increased MDM2 ubiquitin ligase via PI3K. Further, overexpression of wild type p65 NFkB increased MDM2 expression while the NFkB inhibitors NEMO-binding domain (NBD) and Bay11-7082 blocked the activin-induced increase in MDM2. In conclusion, in colon cancer cell migration, activin utilizes NFkB to induce MDM2 activity leading to the degradation of p21 in a PI3K dependent mechanism. This provides new mechanistic knowledge linking activin and NFkB signaling in advanced colon cancer which is applicable to targeted therapeutic interventions. Topics: Activins; Carcinogenesis; Cell Line, Tumor; Cell Movement; Colonic Neoplasms; Colorectal Neoplasms; Female; Gene Expression Regulation, Neoplastic; Humans; Male; Middle Aged; NF-kappa B; Nitriles; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-mdm2; Signal Transduction; Sulfones; Ubiquitin-Protein Ligases | 2017 |