bay-11-7082 has been researched along with Adenocarcinoma-of-Lung* in 2 studies
2 other study(ies) available for bay-11-7082 and Adenocarcinoma-of-Lung
Article | Year |
---|---|
Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells.
Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases proliferation in adenocarcinoma cells. The chemicals that reduce claudin-2 expression may have anti-cancer effects, but such therapeutic medicines have not been developed. We found that azacitidine (AZA), a DNA methylation inhibitor, and trichostatin A (TSA) and sodium butyrate (NaB), histone deacetylase (HDAC) inhibitors, decrease claudin-2 levels. The effect of AZA was mediated by the inhibition of phosphorylated Akt and NF-κB. LY-294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and BAY 11-7082, an NF-κB inhibitor, decreased claudin-2 levels. The reporter activity of claudin-2 was decreased by AZA and LY-294002, which was blocked by the mutation in a putative NF-κB-binding site. NF-κB bound to the promoter region of claudin-2, which was inhibited by AZA and LY-294002. AZA is suggested to decrease the claudin-2 mRNA level mediated by the inhibition of a PI3K/Akt/NF-κB pathway. TSA and NaB did not change phosphorylated Akt and NF-κB levels. Furthermore, these inhibitors did not change the reporter activity of claudin-2 but decreased the stability of claudin-2 mRNA mediated by the elevation of miR-497 microRNA. The binding of histone H3 to the promoter region of miR-497 was inhibited by TSA and NaB, whereas that of claudin-2 was not. These results suggest that HDAC inhibitors decrease claudin-2 levels mediated by the elevation of miR-497 expression. Cell proliferation was additively decreased by AZA, TSA, and NaB, which was partially rescued by ectopic expression of claudin-2. We suggest that epigenetic inhibitors suppress the abnormal proliferation of lung adenocarcinoma cells highly expressing claudin-2. Topics: A549 Cells; Adenocarcinoma; Adenocarcinoma of Lung; Azacitidine; Butyric Acid; Cell Proliferation; Chromones; Claudin-2; Down-Regulation; Epigenesis, Genetic; Humans; Hydroxamic Acids; Lung Neoplasms; MicroRNAs; Morpholines; Nitriles; RNA, Messenger; Signal Transduction; Sulfones | 2017 |
Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma.
Lung adenocarcinoma is a leading cause of cancer death worldwide. We recently showed that genetic inhibition of the NF-κB pathway affects both the initiation and the maintenance of lung cancer, identifying this pathway as a promising therapeutic target. In this investigation, we tested the efficacy of small-molecule NF-κB inhibitors in mouse models of lung cancer. In murine lung adenocarcinoma cell lines with high NF-κB activity, the proteasome inhibitor bortezomib efficiently reduced nuclear p65, repressed NF-κB target genes, and rapidly induced apoptosis. Bortezomib also induced lung tumor regression and prolonged survival in tumor-bearing Kras(LSL-G12D/wt);p53(flox/flox) mice but not in Kras(LSL-G12D/wt) mice. After repeated treatment, initially sensitive lung tumors became resistant to bortezomib. A second NF-κB inhibitor, Bay-117082, showed similar therapeutic efficacy and acquired resistance in mice. Our results using preclinical mouse models support the NF-κB pathway as a potential therapeutic target for a defined subset of lung adenocarcinoma.. Using small-molecule compounds that inhibit NF-κB activity, we provide evidence that NF-κB inhibition has therapeutic efficacy in the treatment of lung cancer. Our results also illustrate the value of mouse models in validating new drug targets in vivo and indicate that acquired chemoresistance may later influence bortezomib treatment in lung cancer. Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Lung Neoplasms; Mice; Mice, 129 Strain; NF-kappa B; Nitriles; Pyrazines; Signal Transduction; Sulfones; Survival Rate; Transcription Factor RelA | 2011 |