bassianolide has been researched along with Metabolic-Diseases* in 2 studies
2 other study(ies) available for bassianolide and Metabolic-Diseases
Article | Year |
---|---|
Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kB-caspase signal pathway.
A 10-week growth trial was conducted to investigate the effects of replacing dietary fishmeal with plant proteins on nutrition metabolism, immunity, inflammation and apoptosis responses in liver tissues of Japanese seabass, Lateolabrax japonicas (initial body weight = 10.42 ± 0.01 g). Two isonitrogenous and isoenergetic diets were formulated. A basal diet containing 54% fishmeal (FM), whereas another diet was prepared by totally replacing FM with a plant protein blend (PP) composed with soybean protein concentrate and cottonseed protein concentrate. Although essential amino acids, fatty acids, and available phosphorus had been balanced according to the FM diet profile, the significantly lower growth performance, metabolic disorder, and fatty liver symptom were observed in the PP group. Compared with the FM group, fish in the PP group showed significantly lower plasma free EAA level and PPV. Glucose metabolism disorder was expressed as the uncontrollable fasting glycolysis and pyruvate aerobic oxidation at postprandial 24 h with significantly up-regulated GK, PK and PDH genes expression, which potentially over-produced acetyl-CoA as the substrate for protein and lipid synthesis. Significantly reduced plasma GLU, but increased GC level, along with very significantly reduced liver GLY storage could be observed in the PP group. Plasma TG and hepatic NEFA contents were significantly decreased, but the hepatic TC content was very significantly increased in the PP group, in addition, hepatocyte vacuolation appeared. The significantly up-regulated cholesterol synthesis gene (HMGCR) expression but down-regulated bile acid synthesis gene (CYP7A1) expression could be the main reason for the fatty liver induced by cholesterol accumulation. The reduced plasma IgM content accompanied by the up-regulated mRNA levels of pro-inflammatory cytokines (TNFα and IL1β) and activated apoptosis signals of liver tissues were found in the PP group. The hyperthyroidism (higher plasma T3 and T4) and the accelerated energy metabolism rate decreased the growth performance in the PP group. The activated p65NF-kB may promote the hepatocytes apoptosis via the extrinsic pathway (caspase8/caspase3). Simultaneously, a "self-saving" response could be observed that activated cAMP promoted the lipolysis/β-oxidation process and up-regulated gene expression of anti-inflammatory cytokine IL10 via promoting CREB expression, further inhibited the over-phosphorylation of JNK protein, which might impe Topics: Animal Feed; Animals; Basal Metabolism; Bass; Diet; Fatty Liver; Fish Diseases; Liver; Metabolic Diseases; Plant Proteins, Dietary; Signal Transduction | 2019 |
Dietary N-Carbamylglutamate (NCG) alleviates liver metabolic disease and hepatocyte apoptosis by suppressing ERK1/2-mTOR-S6K1 signal pathway via promoting endogenous arginine synthesis in Japanese seabass (Lateolabrax japonicus).
N-Carbamylglutamate (NCG), an analogue of N-acetylglutamate (NAG), can promote the synthesis of endogenous Arginine (Arg) in mammals, but not well studied in fish. This study was conducted to investigate the capacity of Arg endogenous synthesis by NCG, and the effects of various dietary NCG doses on growth performance, hepatic health and underlying nutrient regulation metabolism on ERK1/2-mTOR-S6K1 signaling pathway in Japanese seabass (Lateolabrax japonicus). Four experimental diets were prepared with NCG supplement levels of 0 (N0), 360 (N360), 720 (N720) and 3600 (N3600) mg/kg, in which N360 was at the maximum recommended level authorized by MOA, China in fish feed, and the N720 and N3600 levels were 2 and 10-fold of N360, respectively. Each diet was fed to 6 replicates with 30 Japanese seabass (initial body weight, IBW = 11.67 ± 0.02 g) in each tank. The results showed that the dietary NCG supplementation had no significant effects on the SGR and morphometric parameters of Japanese seabass, but 360-720 mg/kg NCG inclusion promoted PPV, while the 10-fold (3600 mg/kg) overdose of NCG had remarkably negative effects with significantly reduced feed efficiency, PPV and LPV. We found that Japanese seabass can utilize 360-720 mg/kg NCG to synthesis Arg to improve the amino acid metabolism by increasing plasma Arg and up-regulating intestinal ASL gene expression. Increased plasma GST and decreased MDA indicated the improved antioxidant response. Dietary NCG inclusion decreased plasma IgM and down-regulated the mRNA levels of inflammation (TNF-α and IL8), apoptosis (caspase family) and fibrosis (TGF-β1) related genes in the liver. The immunofluorescence examination revealed significantly decreased hepatic apoptosis and necrosis signals in the NCG groups. The ameliorated liver function and histological structure were closely related to the improved lipid metabolism parameters with decreased plasma VLDL and hepatic TG and NEFA accumulation, down-regulated fatty acid and cholesterol synthesis and simultaneously increased lipolysis gene mRNA levels, which regulated by inhibiting phosphorylation of ERK1/2-mTOR-S6K1 signaling pathway. Consuming 3600 mg/kg of dietary NCG is not safe for Japanese seabass culturing with the significantly increased FCR and decreased protein and lipid retention, and reduced plasma ALB. Accordingly, the observed efficacy and safety level of dietary NCG in the diet of Japanese seabass is 720 mg/kg. Topics: Animal Feed; Animals; Apoptosis; Arginine; Bass; Diet; Dietary Supplements; Dose-Response Relationship, Drug; Fish Diseases; Fish Proteins; Glutamates; Hepatocytes; Liver Diseases; Metabolic Diseases; Nutrients; Random Allocation; Signal Transduction | 2019 |