bassianolide has been researched along with Liver-Diseases* in 2 studies
2 other study(ies) available for bassianolide and Liver-Diseases
Article | Year |
---|---|
Waterborne copper exposure decreases fish growth and survival by promoting gills and liver impairments in largemouth bass (Micropterus salmoides).
The study aimed to investigate the effect of Cu exposure (0, 51.3, 164, 513, 1,640, and 5,130 μg/L) on fish growth performance, histology, oxidative stress, inflammation, and apoptosis in largemouth bass (Micropterus salmoides) juveniles. 270 fish (2.69 ± 0.02 g) were randomly divided into 6 groups of tanks for 4 weeks with each group comprising three replicate tanks. The results showed that fish exposed to 1,640 and 5,130 μg/L Cu exhibited a significant reduction in fish growth and survival rate (P < 0.05). Compared to the control, the fish at and above 513 μg/L Cu demonstrated histopathological damages in the gills and liver, such as shorter primary and secondary lamellae, smaller hepatocyte nuclei, and an increase in the number of necrotic cells in the liver. Compared to the control, fish at and above 1,640 μg/L Cu had a significantly higher malondialdehyde content and lower activity levels of total superoxide dismutase, glutathione peroxidase, and catalase in the gills and liver (P < 0.05). Furthermore, high concentrations of Cu (1,640 and 5,130 μg/L) significantly increased hepatic inflammation by upregulating interleukin-1β and tumor necrosis factor α expression and hepatic apoptosis by increasing cysteinyl aspartate specific protease 3 (caspase-3) and caspase-9 expression (P < 0.05). Pearson correlation analysis showed that fish growth and survival positively correlated with histological and antioxidant defense parameters, and negatively correlated with oxidative stress parameters, hepatic inflammation, and hepatic apoptosis. Taken together, these results suggest that high levels of waterborne Cu can induce growth retardation and mortality by damaging the liver and gill health. Topics: Animals; Bass; Copper; Gills; Inflammation; Liver Diseases | 2023 |
Dietary N-Carbamylglutamate (NCG) alleviates liver metabolic disease and hepatocyte apoptosis by suppressing ERK1/2-mTOR-S6K1 signal pathway via promoting endogenous arginine synthesis in Japanese seabass (Lateolabrax japonicus).
N-Carbamylglutamate (NCG), an analogue of N-acetylglutamate (NAG), can promote the synthesis of endogenous Arginine (Arg) in mammals, but not well studied in fish. This study was conducted to investigate the capacity of Arg endogenous synthesis by NCG, and the effects of various dietary NCG doses on growth performance, hepatic health and underlying nutrient regulation metabolism on ERK1/2-mTOR-S6K1 signaling pathway in Japanese seabass (Lateolabrax japonicus). Four experimental diets were prepared with NCG supplement levels of 0 (N0), 360 (N360), 720 (N720) and 3600 (N3600) mg/kg, in which N360 was at the maximum recommended level authorized by MOA, China in fish feed, and the N720 and N3600 levels were 2 and 10-fold of N360, respectively. Each diet was fed to 6 replicates with 30 Japanese seabass (initial body weight, IBW = 11.67 ± 0.02 g) in each tank. The results showed that the dietary NCG supplementation had no significant effects on the SGR and morphometric parameters of Japanese seabass, but 360-720 mg/kg NCG inclusion promoted PPV, while the 10-fold (3600 mg/kg) overdose of NCG had remarkably negative effects with significantly reduced feed efficiency, PPV and LPV. We found that Japanese seabass can utilize 360-720 mg/kg NCG to synthesis Arg to improve the amino acid metabolism by increasing plasma Arg and up-regulating intestinal ASL gene expression. Increased plasma GST and decreased MDA indicated the improved antioxidant response. Dietary NCG inclusion decreased plasma IgM and down-regulated the mRNA levels of inflammation (TNF-α and IL8), apoptosis (caspase family) and fibrosis (TGF-β1) related genes in the liver. The immunofluorescence examination revealed significantly decreased hepatic apoptosis and necrosis signals in the NCG groups. The ameliorated liver function and histological structure were closely related to the improved lipid metabolism parameters with decreased plasma VLDL and hepatic TG and NEFA accumulation, down-regulated fatty acid and cholesterol synthesis and simultaneously increased lipolysis gene mRNA levels, which regulated by inhibiting phosphorylation of ERK1/2-mTOR-S6K1 signaling pathway. Consuming 3600 mg/kg of dietary NCG is not safe for Japanese seabass culturing with the significantly increased FCR and decreased protein and lipid retention, and reduced plasma ALB. Accordingly, the observed efficacy and safety level of dietary NCG in the diet of Japanese seabass is 720 mg/kg. Topics: Animal Feed; Animals; Apoptosis; Arginine; Bass; Diet; Dietary Supplements; Dose-Response Relationship, Drug; Fish Diseases; Fish Proteins; Glutamates; Hepatocytes; Liver Diseases; Metabolic Diseases; Nutrients; Random Allocation; Signal Transduction | 2019 |