balicatib and Breast-Neoplasms

balicatib has been researched along with Breast-Neoplasms* in 2 studies

Reviews

1 review(s) available for balicatib and Breast-Neoplasms

ArticleYear
Cathepsin K inhibitors as treatment of bone metastasis.
    Current opinion in supportive and palliative care, 2008, Volume: 2, Issue:3

    Cancer cells that metastasize to the skeleton are, on their own, rarely able to destroy bone. Instead, they stimulate the function of bone-degrading cells, the osteoclasts, leading to the formation of osteolytic lesions. The purpose of this review is to consider cathepsin K, a cysteine protease produced by osteoclasts, as a therapeutic target for the treatment of patients with osteolytic bone metastases.. Cathepsin K plays a key role in osteoclast-mediated bone degradation. It is also produced by cancer cells that metastasize to bone where it functions in proteolytic pathways that promote cancer cell invasion. Highly selective and potent cathepsin K inhibitors have been recently developed and shown to be useful antiresorptive agents to treat osteoporosis. Moreover, preclinical studies show that cathepsin K inhibitors reduce breast cancer-induced osteolysis and skeletal tumor burden. This reduction of skeletal tumor burden is due to the antiresorptive activity of cathepsin K inhibitors, which in turn, deprive cancer cells of bone-derived growth factors that are required for tumor growth.. Cathepsin K inhibitors are appropriate drugs to treat diseases associated with increased bone loss. However, their chronic use in treating osteoporosis may result in adverse effects because basic nitrogen-containing cathepsin K inhibitors accumulate within acidic organelles such as lysosomes, thereby inhibiting the activity of other cathepsins. These adverse effects should not, however, preclude the use of these drugs in life-threatening diseases such as bone metastasis.

    Topics: Azepines; Benzamides; Biphenyl Compounds; Bone Neoplasms; Bone Remodeling; Bone Resorption; Breast Neoplasms; Cathepsin K; Cathepsins; Female; Humans; Male; Osteoclasts; Piperazines; Prostatic Neoplasms; Sulfones; Thiazoles

2008

Other Studies

1 other study(ies) available for balicatib and Breast-Neoplasms

ArticleYear
Inhibitory effect of cathepsin K inhibitor (ODN-MK-0822) on invasion, migration and adhesion of human breast cancer cells in vitro.
    Molecular biology reports, 2021, Volume: 48, Issue:1

    Approximately 90% of patients with advanced breast cancer develop bone metastases; an event that results in severe decrease of quality of life and a drastic deterioration in prognosis. Therefore, to increase the survival of breast cancer patients, the development of new therapeutic strategies to impair metastatic process and skeletal complications is critical. Previous studies on the role of cathepsin K (CTSK) in metastatic spreading led to several strategies for inhibition of this molecule such as MIV-711 (Medivir), balicatib and odanacatib (ODN) which were on trial in the past. The present study intended to assess the anti-metastatic efficacy of ODN in breast cancer cells. Human breast cancer cell lines MDA-MB-231 were treated with different concentrations of ODN and performed invasion, adhesion and migration assays and, RT-PCR and western blot to evaluate the effect of ODN on the metastatic potential of breast cancer cells. ODN markedly decreased wound healing cell migration, invasion and adhesion at a dose dependent manner. ODN inhibits cell invasion by decreasing the matrix metalloproteinase (MMP-9) with the upregulation of TIMP-1 expression. ODN effectively inhibited the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal Kinase (JNK), and blocked the expression of β-integrins and FAK proteins. ODN also significantly inhibited PI3K downstream targets Rac1, Cdc42, paxillin and Src which are critical for cell adhesion, migration and cytoskeletal reorganization. ODN exerts anti-metastatic action through inhibition of signaling pathway for MMP-9, PI3K and MAPK. This indicates potential therapeutic effects of ODN in the treatment of metastatic breast cancer.

    Topics: Benzamides; Biphenyl Compounds; Breast Neoplasms; Cathepsin K; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Proliferation; Female; Gene Expression Regulation, Neoplastic; Humans; Matrix Metalloproteinase 9; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Organic Chemicals; Phosphatidylinositol 3-Kinases; Piperazines; Tissue Inhibitor of Metalloproteinase-1

2021