bafilomycin-a1 has been researched along with Obesity* in 4 studies
4 other study(ies) available for bafilomycin-a1 and Obesity
Article | Year |
---|---|
The role of autophagy in high-fat diet-induced insulin resistance of adipose tissues in mice.
Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity.. Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction.. The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3. Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction Topics: Adipose Tissue; Animals; Autophagy; Diabetes Mellitus, Type 2; Diet, High-Fat; Insulin; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Proto-Oncogene Proteins c-akt | 2022 |
Inhibition of insulin/PI3K/AKT signaling decreases adipose Sortilin 1 in mice and 3T3-L1 adipocytes.
Sortilin 1(Sort1) is a vesicle trafficking receptor that mediates protein sorting in the endocytic and exocytic pathways. Sort1 is a component of the GLUT4 storage vesicles in adipocytes and is also involved in the regulation of adipogenesis. Sort1 protein is reduced in adipose of obese mice and humans, but the underlying cause is not fully understood. Here we report that insulin/PI3K/AKT signaling cascade critically regulates adipose Sort1 protein abundance. Administration of a PI3K inhibitor rapidly decreased Sort1 protein but not mRNA in adipose of chow-fed mice. In 3T3-L1 adipocytes, serum-starvation or inhibition of the PI3K/AKT signaling also decreased Sort1 protein without affecting Sort1 mRNA expression. Sort1 protein downregulation upon PI3K inhibition was blocked by pretreatment of MG132 but not Bafilomycin A1, suggesting that PI3K inhibition caused Sort1 degradation via the proteasome pathway. Using a phospho-specific Sort1 antibody, we showed that endogenous Sort1 was phosphorylated at S825 adjacent to the DXXLL sorting motif on the cytoplasmic tail. We demonstrated that mutagenesis that abolished Sort1 S825 phosphorylation decreased insulin-stimulated Sort1 localization on the plasma membrane and Sort1 protein stability in 3T3-L1 adipocytes. However, endogenous Sort1 phosphorylation at S825 was not affected by insulin stimulation or by inhibition of PI3K. In conclusion, this study revealed an important role of insulin signaling in regulating adipose Sort1 protein stability, and further suggests that impaired insulin signaling may underlie reduced adipose Sort1 in obesity. The cellular events downstream of insulin/PI3K/AKT signaling that mediates insulin regulation of Sort1 stability requires further investigation. Topics: 3T3-L1 Cells; Adaptor Proteins, Vesicular Transport; Adipocytes; Animals; Insulin; Leupeptins; Macrolides; Male; Mice; Mice, Obese; Obesity; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction | 2017 |
Impaired macrophage autophagy induces systemic insulin resistance in obesity.
Obesity-induced insulin resistance and diabetes are significantly associated with infiltrates of inflammatory cells in adipose tissue. Previous studies recognized the involvement of autophagy in the regulation of metabolism in multiple tissues, including β-cells, hepatocytes, myocytes, and adipocytes. However, despite the importance of macrophages in obesity-induced insulin resistance, the role of macrophage autophagy in regulating insulin sensitivity is seldom addressed. In the present study, we show that macrophage autophagy is important for the regulation of systemic insulin sensitivity. We found that macrophage autophagy is downregulated by both acute and chronic inflammatory stimuli, and blockade of autophagy significantly increased accumulation of reactive oxygen species (ROS) in macrophages. Macrophage-specific Atg7 knockout mice displayed a shift in the proportion to pro-inflammatory M1 macrophages and impairment of insulin sensitivity and glucose homeostasis under high-fat diet conditions. Furthermore, inhibition of ROS in macrophages with antioxidant recovered adipocyte insulin sensitivity. Our results provide evidence of the underlying mechanism of how macrophage autophagy regulates inflammation and insulin sensitivity. We anticipate our findings will serve as a basis for development of therapeutics for inflammatory diseases, including diabetes. Topics: 3T3-L1 Cells; Adipocytes; Adipose Tissue; Animals; Autophagy; Autophagy-Related Protein 7; Diet, High-Fat; Disease Models, Animal; Enzyme Inhibitors; Glucose; Inflammation; Insulin; Insulin Resistance; Macrolides; Macrophages; Male; Mice; Mice, Knockout; Obesity; RAW 264.7 Cells; Reactive Oxygen Species | 2016 |
Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats.
To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes.. Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression.. In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro, ezetimibe treatment significantly decreased PA-induced fat accumulation and increased PA-reduced mRNA and protein expression involved in autophagy (P < 0.05). Ezetimibe-increased autophagosomes was observed in TEM analysis. Immunoblotting analysis of autophagy formation with an inhibitor of autophagy demonstrated that ezetimibe-increased autophagy resulted from increased autophagic flux.. The present study demonstrates that ezetimibe-mediated improvement in hepatic steatosis might involve the induction of autophagy. Topics: Animals; Anticholesteremic Agents; Autophagy; Biomarkers; Blood Glucose; Cells, Cultured; Diabetes Mellitus, Type 2; Disease Models, Animal; Ezetimibe; Fatty Liver; Gene Expression Regulation; Hepatocytes; Lipids; Liver; Macrolides; Male; Obesity; Palmitic Acid; Rats, Inbred OLETF; RNA, Messenger | 2015 |