bafilomycin-a1 has been researched along with Multiple-Myeloma* in 4 studies
4 other study(ies) available for bafilomycin-a1 and Multiple-Myeloma
Article | Year |
---|---|
Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignant melanoma and osteosarcoma cells. Live-cell imaging revealed that even under nutritional and stress-free conditions, these cells possessed a substantial level of autophagosomes, which were localized in the cytoplasm separately from tubular mitochondria. In response to cytotoxic levels of PSM, the mitochondria became highly fragmented, and aggregated and colocalized with the autophagosomes. The cytotoxic effects of PSM were suppressed in response to various pharmacological autophagy inhibitors, including 3-methyladenine (3-MA) and bafilomycin A1, thus indicating the induction of autophagic cell death (ACD). Lethal levels of PSM also resulted in non-apoptotic, non-autophagic cell death in a reactive oxygen species-dependent manner under certain circumstances. Furthermore, TRAIL exhibited only a modest cytotoxicity toward these tumor cells, and did not induce ACD and mitochondrial aberration. The combined use of TRAIL and subtoxic concentrations of 3-MA resulted in decreased basal autophagy, increased mitochondrial aberration, colocalization with autophagosomes and apoptosis. These results indicated that PSM may induce ACD, whereas TRAIL may trigger cytoprotective autophagy that compromises apoptosis. To the best of our knowledge, the present study is the first to demonstrate that PSM can induce ACD in human cancer cells. These findings provide a rationale for the advantage of PSM over TRAIL in the destruction of apoptosis-resistant melanoma and osteosarcoma cells. Topics: A549 Cells; Adenine; Autophagosomes; Autophagy; Bone Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cytoplasm; Gene Expression Regulation, Neoplastic; Humans; Macrolides; Multiple Myeloma; Osteosarcoma; Plasma Gases; Reactive Oxygen Species; TNF-Related Apoptosis-Inducing Ligand | 2018 |
Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells.
Cells degrade proteins either by proteasomes that clinically are targeted by for example bortezomib or carfilzomib, or by formation of autophagosomes and lysosomal degradation that can be inhibited by hydroxychloroquine (HCQ). Multiple myeloma is unique among cancers because proteasomal inhibition has good clinical effects. However, some multiple myeloma patients display intrinsic resistance to the treatment and most patients acquire resistance over time. We hypothesized that simultaneous targeting both arms of protein degradation could be a way to improve treatment of multiple myeloma. Here we tested the combined effects of the lysosomal inhibitor HCQ and clinically relevant proteasome inhibitors on myeloma cell lines and primary cells. Carfilzomib and bortezomib both induced immunoglobulin-containing aggregates in myeloma cells. HCQ significantly potentiated the effect of carfilzomib in both cell lines and in primary myeloma cells. In contrast, HCQ had little or no effects on the toxicity of bortezomib. Furthermore, cells adapted to tolerate high levels of carfilzomib could be re-sensitized to the drug by co-treatment with HCQ. Thus, we show that inhibition of lysosomal degradation can overcome carfilzomib resistance, suggesting that the role of autophagy in myeloma cells is dependent on type of proteasome inhibitor. In conclusion, attempts should be made to combine HCQ with carfilzomib in the treatment of multiple myeloma. Topics: Antineoplastic Combined Chemotherapy Protocols; Autophagy; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Synergism; Enzyme Inhibitors; Humans; Hydroxychloroquine; Lysosomes; Macrolides; Microscopy, Confocal; Microscopy, Fluorescence; Multiple Myeloma; Oligopeptides; Primary Cell Culture; Proteasome Endopeptidase Complex; Proteolysis; Sequestosome-1 Protein | 2016 |
[Mechanisms of ROS in U266 cell death induced by FTY720].
This study was purpose to investigate the role of reactive oxygen species (ROS) in apoptosis and autophagy induced by FTY720 in multiple myeloma cell line U266. U266 cells were treated by different concentrations of FTY720 for 24 h, the apoptotic rates were detected by flow cytometry, and the expression of LC3B was detected by Western blot. The results indicated that apoptosis and autophagy were induced by FTY720 in U266 cells. Autophagy induced by FTY720 could lead to cell death. Bafilomycin A1, the inhibitor of autophagy, could enhance the cell viability in U266 cells treated with FTY720. NAC or Tiron, ROS scavenger, could decrease the FTY720 induced apoptosis and the expression of LC3B-II was reduced in combination of FTY720 with NAC or Tiron as compared with treatment with FTY720 only. It is concluded that FTY720 can induce U266 cell apoptosis and autophagy. ROS is the mediator that regulates both the apoptosis and autophagy in multiple myeloma cells. Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Apoptosis; Autophagy; Cell Line, Tumor; Fingolimod Hydrochloride; Humans; Macrolides; Microtubule-Associated Proteins; Multiple Myeloma; Propylene Glycols; Reactive Oxygen Species; Sphingosine | 2013 |
Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress.
Bortezomib (BZ), a first line 26S proteasome inhibitor, induces a potent cytocidal effect with caspase-3 activation in multiple myeloma (MM) cell lines. Since IκBα is a substrate of the proteasome, the initial rationale for using BZ in MM has been to inhibit NF-κB. However, BZ rather activated NF-κB activity in U266 cells. BZ induces autophagy as well as endoplasmic reticulum (ER) stress in various cell lines tested. Inhibition of initial autophagosome formation by treatment with either 3-methyladenine or siRNA for LC3B in U266 cells and knockdown of the atg5 gene in a murine embryonic fibroblastic cell line all resulted in attenuation of BZ-induced cell death. In contrast, combined treatment with BZ and bafilomycin A1 (BAF), which is a specific inhibitor of vacuolar-ATPase and is used as an autophagy inhibitor at the late stage, resulted in synergistic cytotoxicity, compared with that by either BZ or BAF alone. BAF treatment also induced ER stress, but the kinetics of inductions of ER stress-related genes [e.g. CHOP (GADD153) and GRP78] completely differed between BZ- and BAF-treatments: BZ induced these ER stress markers within 8 h, whereas treatment with BAF required more than 48 h in U266 cells. In order to synchronize ER stress, we pre-treated U266 cells with BAF for 48 h, followed with BZ for 48 h. The sequential treatment with BAF and BZ induced a further enhanced cytotoxicity, compared with the simultaneous combination of BAF and BZ. These data suggest crosstalk among the ubiquitin-proteasome system, the autophagy-lysosome system, and ER stress. Controlling these interactions and kinetics appears to have important implications for optimizing clinical cancer treatment including MM-therapy. Topics: Antineoplastic Combined Chemotherapy Protocols; Autophagy; Boronic Acids; Bortezomib; Cell Death; Cell Line, Tumor; Drug Evaluation, Preclinical; Drug Synergism; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; HL-60 Cells; Humans; Lysosomes; Macrolides; Multiple Myeloma; Proteasome Endopeptidase Complex; Pyrazines; Signal Transduction; Stress, Physiological; U937 Cells; Unfolded Protein Response | 2011 |