bafilomycin-a1 has been researched along with Fibrosis* in 4 studies
4 other study(ies) available for bafilomycin-a1 and Fibrosis
Article | Year |
---|---|
Autophagy Inhibition Sensitizes Renal Tubular Epithelial Cell to G1 Arrest Induced by Transforming Growth Factor beta (TGF-β).
BACKGROUND Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-ß-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-ß has not been explored well. MATERIAL AND METHODS The effects of autophagy inhibition on TGF-ß-induced cell cycle arrest in TECs were explored in vitro. Human kidney-2 (HK-2) cells were stimulated by TGF-ß with or without a combined treatment of autophagy inhibitor chloroquine (CQ) or bafilomycin A1 (Baf). RESULTS Autophagy inhibition by CQ or Baf promotes the suppression of growth in TGF-ß-treated HK-2 cells, as detected by the Cell Counting Kit-8 (CCK-8) method. In addition, CQ or Baf stimulation enhances G1 arrest in TGF-ß treated HK-2 cells, as investigated using propidium iodide (PI) staining and flow cytometry, which was further confirmed by a decrease in the expression of phosphorylated retinoblastoma protein (p-RB) and cyclin-dependent kinase 4 (CDK4). The upregulation of p21 induced by CQ or Baf may mediate an enhanced G1 arrest in TGF-ß treated HK-2 cells. Western blot analysis showed that TGF-ß-induced expression of extracellular matrix fibronectin was notably upregulated in the presence of autophagy inhibitors. CONCLUSIONS Inhibition of autophagy sensitizes the TECs to G1 arrest and proliferation suppression induced by TGF-ß that contributes to the induction of tubulointerstitial fibrosis. Topics: Autophagy; Cell Line; Cell Proliferation; Chloroquine; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase Inhibitor p21; Enzyme Inhibitors; Epithelial Cells; Fibronectins; Fibrosis; G1 Phase Cell Cycle Checkpoints; Humans; In Vitro Techniques; Kidney Tubules; Macrolides; Renal Insufficiency, Chronic; Retinoblastoma Protein; Transforming Growth Factor beta | 2020 |
Autophagy modulates mesenchymal-to-endothelial transition via p53.
Mesenchymal-to-endothelial transition (MEndT) is one of the mechanisms that influences cardiac fibrosis, which is a key process in cardiac remodeling. It has been reported that autophagy inhibits endothelial cell transition. However, whether autophagy could modulate MEndT in cardiac fibrosis has not yet been investigated. Here, we discussed the association between autophagy and MEndT and its possible mechanism. In this study, we induced endothelial-to-mesenchymal transition using transforming growth factor-β to generate mesenchymal cells and fibroblasts in wild-type human umbilical vein endothelial cells and cells with p53 knockout or overexpression. Then, autophagy was induced by Earle's balanced salt solution (EBSS) and was inhibited by bafilomycin A1 or lentivirus-ATG5-shRNA. The expression levels of MEndT and the autophagy markers CD31, VE-Cadherin, Vimentin, α-SMA, LC3, p62 and p53 were examined. We found that activation of autophagy could promote MEndT and increase cytoplasmic and total expression of p53, that but nuclear p53 expression was decreased, and that inhibition of autophagy activation could reverse the effect of EBSS. Moreover, after knockout of nuclear p53, autophagy promoted MEndT, while autophagy inhibited MEndT in p53 overexpressing cells. Our results demonstrate that autophagy modulate MEndT by nuclear p53 provide a new strategy for the treatment of fibrosis diseases. Topics: Autophagy; Autophagy-Related Protein 5; Cells, Cultured; Epithelial-Mesenchymal Transition; Fibrosis; Human Umbilical Vein Endothelial Cells; Humans; Macrolides; Signal Transduction; Transforming Growth Factor beta; Tumor Suppressor Protein p53 | 2020 |
Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts.
The incidence of heart failure with concomitant cardiac fibrosis is very high in developed countries. Fibroblast activation in heart is causal to cardiac fibrosis as they convert to hypersynthetic cardiac myofibroblasts. There is no known treatment for cardiac fibrosis. Myofibroblasts contribute to the inappropriate remodeling of the myocardial interstitium, which leads to reduced cardiac function and ultimately heart failure. Elevated levels of autophagy have been linked to stress-induced ventricular remodeling and other cardiac diseases. Previously, we had shown that TGF-β1 treatment of human atrial fibroblasts both induced autophagy and enhanced the fibrogenic response supporting a linkage between the myofibroblast phenotype and autophagy. We now demonstrate that with in vitro culture of primary rat cardiac fibroblasts, inhibition of autophagy represses fibroblast to myofibroblast phenoconversion. Culturing unpassaged cardiac fibroblasts for 72 hours on plastic tissue culture plates is associated with elevated α-smooth muscle actin (α-SMA) expression. This activation parallels increased microtubule-associated protein 1A/1B-light chain 3 (LC-3β II) protein expression. Inhibition of autophagy with bafilomycin-A1 (Baf-A1) and chloroquine (CQ) in cardiac fibroblasts significantly reduces α-SMA and extracellular domain A fibronectin (ED-A FN) protein vs untreated controls. Myofibroblast cell migration and contractility were significantly reduced following inhibition of autophagy. These data support the possibility of a causal link between cardiac fibroblast-to-myofibroblast phenoconversion and autophagy. Topics: Actins; Animals; Autophagy; Cardiomyopathies; Cell Movement; Cells, Cultured; Chloroquine; Fibroblasts; Fibronectins; Fibrosis; Macrolides; Male; Microtubule-Associated Proteins; Myocardium; Myofibroblasts; p38 Mitogen-Activated Protein Kinases; Phenotype; Phosphorylation; Primary Cell Culture; Rats, Sprague-Dawley; Time Factors | 2016 |
Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts.
Transforming growth factor-β(1) (TGF-β(1)) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β(1) may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β(1)-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β(1) to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β(1) promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β(1) in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β(1)-induced autophagy is required for the fibrogenic response in hATMyofbs. Topics: Adenine; Animals; Autophagy; Autophagy-Related Protein 5; Autophagy-Related Protein 7; Cell Proliferation; Collagen Type I; Fibronectins; Fibrosis; Heart Atria; Humans; Macrolides; Mice; Microtubule-Associated Proteins; Myofibroblasts; Primary Cell Culture; Rats; Signal Transduction; Smad2 Protein; Transforming Growth Factor beta1 | 2015 |