bafilomycin-a has been researched along with Neuroblastoma* in 5 studies
5 other study(ies) available for bafilomycin-a and Neuroblastoma
Article | Year |
---|---|
Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells.
Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Aggressive cell growth and chemoresistance are notorious obstacles in neuroblastoma therapy. Exposure to the anticancer drug ellipticine inhibits efficiently growth of neuroblastoma cells and induces apoptosis in these cells. However, ellipticine induced resistance in these cells. The upregulation of a vacuolar (V)-ATPase gene is one of the factors associated with resistance development. In accordance with this finding, we found that levels of V-ATPase protein expression are higher in the ellipticine-resistant UKF-NB-4ELLI line than in the parental ellipticine-sensitive UKF-NB-4 cell line. Treatment of ellipticine-sensitive UKF-NB-4 and ellipticine-resistant UKF-NB-4ELLI cells with ellipticine-induced cytoplasmic vacuolization and ellipticine is concentrated in these vacuoles. Confocal microscopy and staining of the cells with a lysosomal marker suggested these vacuoles as lysosomes. Transmission electron microscopy and no effect of an autophagy inhibitor wortmannin ruled out autophagy. Pretreatment with a V-ATPase inhibitor bafilomycin A and/or the lysosomotropic drug chloroquine prior to ellipticine enhanced the ellipticine‑mediated apoptosis and decreased ellipticine-resistance in UKF-NB-4ELLI cells. Moreover, pretreatment with these inhibitors increased formation of ellipticine-derived DNA adducts, one of the most important DNA-damaging mechanisms responsible for ellipticine cytotoxicity. In conclusion, resistance to ellipticine in the tested neuroblastoma cells is associated with V-ATPase-mediated vacuolar trapping of this drug, which may be decreased by bafilomycin A and/or chloroquine. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Chloroquine; DNA Adducts; Drug Resistance, Neoplasm; Ellipticines; Humans; Macrolides; Neuroblastoma; Vacuolar Proton-Translocating ATPases; Vacuoles | 2015 |
Arylpiperazine-mediated activation of Akt protects SH-SY5Y neuroblastoma cells from 6-hydroxydopamine-induced apoptotic and autophagic death.
We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through stabilization of mitochondrial membrane and subsequent prevention of superoxide production, caspase activation and DNA fragmentation. 6-OHDA-triggered autophagic response was also reduced by 6b, which prevented inactivation of the main autophagy repressor mTOR, upregulation of proautophagic beclin-1, conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, as well as intracytoplasmic acidification induced by 6-OHDA. The inhibition of autophagy using LC3β gene silencing or pharmacological autophagy blockers 3-methyladenine or bafilomycin A1, mimicked the cytoprotective effect of 6b. While the treatment with 6b had no effect on the phosphorylation of proapoptotic MAP kinases ERK and JNK, it markedly increased the phosphorylation of the prosurvival kinase Akt in 6-OHDA-treated cells. Akt inhibitor DEBC or RNA interference-mediated Akt silencing reduced the ability of 6b to block 6-OHDA-triggered apoptotic and autophagic responses, thus confirming their dependency on Akt activation. The cytoprotective effect of 6b was also observed in 6-OHDA-treated neuronal PC12 cells, but not in SH-SY5Y or PC12 cells exposed to 1-methyl-4-phenylpyridinium, indicating that the observed neuroprotection was dependent on the cytotoxic stimulus. Because of the ability to prevent 6-OHDA induced apoptotic/autophagic cell death through activation of Akt, the investigated arylpiperazines could be potential candidates for treatment of neurodegenerative diseases. Topics: Adenine; Adrenergic Agents; Analysis of Variance; Apoptosis; Autophagy; Cell Survival; Cytoplasm; Dose-Response Relationship, Drug; Drug Interactions; Humans; Macrolides; Neuroblastoma; Neuroprotective Agents; Oxidopamine; Piperazines; Proto-Oncogene Proteins c-akt; Pyridines; RNA, Small Interfering; Signal Transduction; Superoxides; Time Factors | 2013 |
Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration.
α-Synuclein levels are critical to Parkinson's disease pathogenesis. Wild-type α-synuclein is degraded partly by chaperone-mediated autophagy, and aberrant α-synuclein may act as an inhibitor of the pathway. To address whether the induction of chaperone-mediated autophagy may represent a potential therapy against α-synuclein-induced neurotoxicity, we overexpressed lysosomal-associated membrane protein 2a, the rate-limiting step of chaperone-mediated autophagy, in human neuroblastoma SH-SY5Y cells, rat primary cortical neurons in vitro, and nigral dopaminergic neurons in vivo. Overexpression of the lysosomal-associated membrane protein 2a in cellular systems led to upregulation of chaperone-mediated autophagy, decreased α-synuclein turnover, and selective protection against adenoviral-mediated wild-type α-synuclein neurotoxicity. Protection was observed even when the steady-state levels of α-synuclein were unchanged, suggesting that it occurred through the attenuation of α-synuclein-mediated dysfunction of chaperone-mediated autophagy. Overexpression of the lysosomal receptor through the nigral injection of recombinant adeno-associated virus vectors effectively ameliorated α-synuclein-induced dopaminergic neurodegeneration by increasing the survival of neurons located in the substantia nigra as well as the axon terminals located in the striatum, which was associated with a reduction in total α-synuclein levels and related aberrant species. We conclude that induction of chaperone-mediated autophagy may provide a novel therapeutic strategy in Parkinson's disease and related synucleinopathies through two different mechanisms: amelioration of dysfunction of chaperone-mediated autophagy and lowering of α-synuclein levels. Topics: alpha-Synuclein; Amphetamine; Analysis of Variance; Animals; Apomorphine; Autophagy; Cells, Cultured; Cerebral Cortex; Corpus Striatum; Dependovirus; Dopamine; Embryo, Mammalian; Enzyme Inhibitors; Female; Gene Expression Regulation; Genetic Vectors; Green Fluorescent Proteins; Hemagglutinins; Humans; Lysosomal Membrane Proteins; Lysosomal-Associated Membrane Protein 2; Macrolides; Mice; Molecular Chaperones; Motor Activity; Nerve Degeneration; Neuroblastoma; Neurons; Rats; Transfection; Tyrosine 3-Monooxygenase | 2013 |
ATP13A2 regulates mitochondrial bioenergetics through macroautophagy.
Mitochondrial dysfunction and autophagy are centrally implicated in Parkinson's disease (PD). Mutations in ATP13A2, which encodes a lysosomal P-type ATPase of unknown function, cause a rare, autosomal recessive parkinsonian syndrome. Lysosomes are essential for autophagy, and autophagic clearance of dysfunctional mitochondria represents an important element of mitochondrial quality control. In this study, we tested the hypothesis that loss of ATP13A2 function will affect mitochondrial function. Knockdown of ATP13A2 led to an increase in mitochondrial mass in primary mouse cortical neurons and in SH-SY5Y cells forced into mitochondrial dependence. ATP13A2-deficient cells exhibited increased oxygen consumption without a significant change in steady-state levels of ATP. Mitochondria in knockdown cells exhibited increased fragmentation and increased production of reactive oxygen species (ROS). Basal levels of the autophagosome marker LC3-II were not significantly changed, however, ATP13A2 knockdown cells exhibited decreased autophagic flux, associated with increased levels of phospho-mTOR, and resistance to autophagy induction by rapamycin. The effects of ATP13A2 siRNA on oxygen consumption, mitochondrial mass and ROS production could be mimicked by inhibiting autophagy induction using siRNA to Atg7. We propose that decreased autophagy associated with ATP13A2 deficiency affects mitochondrial quality control, resulting in increased ROS production. These data are the first to implicate loss of ATP13A2 function in mitochondrial maintenance and oxidative stress, lending further support to converging genetic and environmental evidence for mitochondrial dysregulation in PD pathogenesis. Topics: Adenosine Triphosphate; Animals; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Related Protein 7; Beclin-1; Cells, Cultured; Cerebral Cortex; Electroporation; Energy Metabolism; Enzyme Inhibitors; Green Fluorescent Proteins; H(+)-K(+)-Exchanging ATPase; Intracellular Signaling Peptides and Proteins; Macrolides; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Microtubule-Associated Proteins; Mitochondria; Mutation; Neuroblastoma; Neurons; Oxygen Consumption; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; RNA, Small Interfering; Transfection | 2012 |
Intracellular pH regulates amyloid precursor protein intracellular domain accumulation.
The amyloid precursor protein (APP) metabolism is central to pathogenesis of Alzheimer's disease (AD). Parenchymal amyloid deposits, a neuropathological hallmark of AD, are composed of amyloid-beta peptides (Abeta). Abeta derives from the amyloid precursor protein (APP) by sequential cleavages by beta- and gamma-secretases. Gamma-secretase cleavage releases the APP intracellular domain (AICD), suggested to mediate a nuclear signaling. Physiologically, AICD is seldom detected and thus supposed to be rapidly degraded. The mechanisms responsible of its degradation remain unknown. We used a pharmacological approach and showed that several alkalizing drugs induce the accumulation of AICD in neuroblastoma SY5Y cell lines stably expressing APP constructs. Moreover, alkalizing drugs induce AICD accumulation in naive SY5Y, HEK and COS cells. This accumulation is not mediated by the proteasome or metallopeptidases and is not the result of an increased gamma-secretase activity since the gamma-secretase cleavage of Notch1 and N-Cadherin is not affected by alkalizing drug treatments. Altogether, our data demonstrate for the first time that alkalizing drugs induce the accumulation of AICD, a mechanism likely mediated by the endosome/lysosome pathway. Topics: Alkalies; Alzheimer Disease; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Animals; Cadherins; Cell Line, Tumor; Chlorocebus aethiops; COS Cells; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Kidney; Lysosomes; Macrolides; Neuroblastoma; Protein Structure, Tertiary; Receptors, Notch; Solubility; Transfection | 2007 |