bafilomycin-a and Mesothelioma

bafilomycin-a has been researched along with Mesothelioma* in 1 studies

Other Studies

1 other study(ies) available for bafilomycin-a and Mesothelioma

ArticleYear
Inhibition of autophagy potentiates pemetrexed and simvastatin-induced apoptotic cell death in malignant mesothelioma and non-small cell lung cancer cells.
    Oncotarget, 2015, Oct-06, Volume: 6, Issue:30

    Pemetrexed, a multitarget antifolate used to treat malignant mesothelioma and non-small cell lung cancer (NSCLC), has been shown to stimulate autophagy. In this study, we determined whether autophagy could be induced by pemetrexed and simvastatin cotreatment in malignant mesothelioma and NSCLC cells. Furthermore, we determined whether inhibition of autophagy drives apoptosis in malignant mesothelioma and NSCLC cells. Malignant mesothelioma MSTO-211H and A549 NSCLC cells were treated with pemetrexed and simvastatin alone and in combination to evaluate their effect on autophagy and apoptosis. Cotreatment with pemetrexed and simvastatin induced greater caspase-dependent apoptosis and autophagy than either drug alone in malignant mesothelioma and NSCLC cells. 3-Methyladenine (3-MA), ATG5 siRNA, bafilomycin A, and E64D/pepstatin A enhanced the apoptotic potential of pemetrexed and simvastatin, whereas rapamycin and LY294002 attenuated their induction of caspase-dependent apoptosis. Our data indicate that pemetrexed and simvastatin cotreatment augmented apoptosis and autophagy in malignant mesothelioma and NSCLC cells. Inhibition of pemetrexed and simvastatin-induced autophagy was shown to enhance apoptosis, suggesting that this could be a novel therapeutic strategy against malignant mesothelioma and NSCLC.

    Topics: Adenine; AMP-Activated Protein Kinases; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Autophagy-Related Protein 5; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Synergism; Humans; Lung Neoplasms; Macrolides; Mesothelioma; Mesothelioma, Malignant; Mice, Nude; Microtubule-Associated Proteins; Pemetrexed; Pepstatins; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; RNA Interference; Signal Transduction; Simvastatin; Time Factors; TOR Serine-Threonine Kinases; Transfection; Tumor Burden; Xenograft Model Antitumor Assays

2015