azilsartan and Cardiomegaly

azilsartan has been researched along with Cardiomegaly* in 2 studies

Other Studies

2 other study(ies) available for azilsartan and Cardiomegaly

ArticleYear
Azilsartan ameliorates ventricular hypertrophy in rats suffering from pressure overload-induced cardiac hypertrophy by activating the Keap1-Nrf2 signalling pathway.
    The Journal of pharmacy and pharmacology, 2021, Dec-07, Volume: 73, Issue:12

    Investigate if azilsartan protects against myocardial hypertrophy by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathways.. Abdominal aortic constriction (AAC)-induced cardiac hypertrophy in rats was applied. Azilsartan or vehicle was administered daily for 6 weeks in sham or AAC rats. Cardiac morphology and ventricular function were determined. Azilsartan effects upon neonatal rat cardiomyocyte (NRCM) hypertrophy and molecular mechanisms were studied in angiotensin (Ang) II-stimulated NRCMs in vitro. Nrf2-small interfering RNA (siRNA) was used to knockdown Nrf2 expression. Messenger RNA (mRNA)/protein expression of Kelch-like erythroid cell-derived protein (Keap)1 and Nrf2 and its downstream antioxidant enzymes was determined by real-time reverse transcription-quantitative polymerase chain reaction and western blotting, respectively.. Azilsartan treatment ameliorated cardiac hypertrophy/fibrosis significantly in AAC rats. Azilsartan increased expression of Nrf2 protein but decreased expression of Keap1 protein. Upregulation of protein expression of Nrf2's downstream antioxidant enzymes by azilsartan treatment was observed. Azilsartan inhibited Ang II-induced NRCM hypertrophy significantly and similar effects on the Keap1-Nrf2 pathway were observed in vivo. Nrf2 knockdown markedly counteracted the beneficial effects of azilsartan on NRCM hypertrophy and the Keap1-Nrf2 pathway.. Azilsartan restrained pressure overload-induced cardiac remodelling by activating the Keap1-Nrf2 pathway and increasing expression of downstream antioxidant enzymes to alleviate oxidative stress.

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antioxidants; Benzimidazoles; Cardiomegaly; Female; Heart Ventricles; Kelch-Like ECH-Associated Protein 1; Male; Myocardium; Myocytes, Cardiac; NF-E2-Related Factor 2; Oxadiazoles; Oxidative Stress; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Up-Regulation

2021
Role of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis in the hypotensive effect of azilsartan.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2014, Volume: 37, Issue:7

    The possible counteracting effect of angiotensin (Ang)-converting enzyme (ACE)2/Ang-(1-7)/Mas axis against the ACE/Ang II/Ang II type 1 (AT1) receptor axis in blood pressure control has been previously described. We examined the possibility that this pathway might be involved in the anti-hypertensive effect of a newly developed AT1 receptor blocker (ARB), azilsartan, and compared azilsartan's effects with those of another ARB, olmesartan. Transgenic mice carrying the human renin and angiotensinogen genes (hRN/hANG-Tg) were given azilsartan or olmesartan. Systolic and diastolic blood pressure, as determined by radiotelemetry, were significantly higher in hRN/hANG-Tg mice than in wild-type (WT) mice. Treatment with azilsartan or olmesartan (1 or 5 mg kg(-1) per day) significantly decreased systolic and diastolic blood pressure, and the blood pressure-lowering effect of azilsartan was more marked than that of olmesartan. The urinary Na concentration decreased in an age-dependent manner in hRN/hANG-Tg mice. Administration of azilsartan or olmesartan increased urinary Na concentration, and this effect was weaker with olmesartan than with azilsartan. Azilsartan decreased ENaC-α mRNA expression in the kidney and decreased the ratio of heart to body weight. Olmesartan had a similar but less-marked effect. ACE2 mRNA expression was lower in the kidneys and hearts of hRN/hANG-Tg mice than in WT mice. This decrease in ACE2 mRNA expression was attenuated by azilsartan, but not by olmesartan. These results suggest that the hypotensive and anti-hypertrophic effects of azilsartan may involve activation of the ACE2/Ang-(1-7)/Mas axis with AT1 receptor blockade.

    Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Benzimidazoles; Blood Pressure; Cardiomegaly; Epithelial Sodium Channels; Imidazoles; Male; Mice; Mice, Inbred C57BL; Oxadiazoles; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Sodium; Tetrazoles

2014