azidopine has been researched along with Carcinoma--Squamous-Cell* in 3 studies
3 other study(ies) available for azidopine and Carcinoma--Squamous-Cell
Article | Year |
---|---|
Reversal of multidrug resistance by 7-O-benzoylpyripyropene A in multidrug-resistant tumor cells.
7-O-Benzoylpyripyropene A (7-O-BzP), a semi-synthetic analog of pyripyropene, was investigated for its reversing effect on multidrug-resistant (MDR) tumor cells. 7-O-BzP (6.25 microg/ml) completely reversed resistance against vincristine and adriamycin in vincristine-resistant KB cells (VJ-300) and adriamycin-resistant P388 cells (P388/ADR), respectively. 7-O-BzP alone had no effect on the growth of drug sensitive and drug-resistant cells. 7-O-BzP (6.25 microg/ml) significantly enhanced accumulation of [3H]vincristine in VJ-300 cells and completely inhibited the binding of [3H]azidopine to the P-glycoprotein in VJ-300 cells and P388/ADR cells. The result suggests that 7-O-BzP effectively reverses P-glycoprotein-related MDR by interacting directly with P-glycoprotein in drug resistant VJ-300 and P388/ADR cells. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Azides; Carcinoma, Squamous Cell; Dihydropyridines; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Humans; KB Cells; Pyridones; Sesquiterpenes; Tumor Cells, Cultured; Vincristine | 2000 |
Effects of a new triazinoaminopiperidine derivative on adriamycin accumulation and retention in cells displaying P-glycoprotein-mediated multidrug resistance.
A new triazinoaminopiperidine derivative, Servier 9788 (S9788), was investigated for its ability to increase Adriamycin (ADR) accumulation and retention in two rodent (P388/ADR and DC-3F/AD) and three human (KB-A1, K562/R and COLO 320DM) cell lines displaying the P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) phenotype. Depending on the cell line S9788 was shown to be two to five times more active and five to 15 times more potent than Verapamil (VRP) in increasing ADR accumulation in resistant cells. ADR retention in KB-A1 cells maintained in a concentration of 10 microM S9788 was twice that in VRP-treated cells, and similar to that measured in the untreated sensitive KB-3-1 cells. Although 5 microM S9788 and 50 microM VRP gave the same values of ADR uptake in KB-A1 cells, S9788 was shown to induce a greater ADR retention following cell wash and post-incubation in resistance modifier- and ADR-free medium. Taking into account that S9788 had no effects on ADR accumulation and retention in sensitive KB-3-1 cells, it can be suggested that S9788 inhibits specifically the P-gp dependent ADR efflux, and in a manner less reversible than that observed with VRP. Moreover, [3H]azidopine photolabeling of P-gp, in P388/ADR plasma membranes, was completely inhibited by 100 microM S9788. Although S9788, as VRP, had no effect on the cell cycle of P388 cells, 5 microM S9788 increased 700-fold the efficacy of ADR to block P388/ADR cells in the G2+M phase of the cell cycle. Together, these results show that the sensitization, by S9788, of cell lines resistant to ADR is mainly due to an increase in ADR accumulation and retention, leading to an increase in the number of resistant cells blocked in the G2+M phase. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Azides; Carcinoma, Squamous Cell; Cell Cycle; Cell Membrane; Cells, Cultured; Colonic Neoplasms; Cricetinae; Cricetulus; Dihydropyridines; Doxorubicin; Drug Resistance; Flow Cytometry; Fluorescence; Humans; Kinetics; Leukemia P388; Leukemia, Myeloid, Acute; Lung; Membrane Glycoproteins; Mice; Piperidines; Sensitivity and Specificity; Triazines; Tritium; Tumor Cells, Cultured; Verapamil | 1992 |
Agents which reverse multidrug-resistance are inhibitors of [3H]vinblastine transport by isolated vesicles.
Resistance of human cancer cells to multiple cytotoxic hydrophobic agents (multidrug resistance) is due to overexpression of the MDR1 gene whose product is the ATP-dependent multidrug transporter, P-glycoprotein. We have previously reported that plasma membrane vesicles partially purified from multidrug-resistant human KB carcinoma cells, but not from drug-sensitive cells, accumulated [3H]vinblastine in an ATP-dependent manner (Horio, M., Gottesman, M.M. and Pastan, I. (1988) Proc. Natl. Acad. Sci. USA 85, 3580-3584). Certain calcium-channel blockers, quinidine, and phenothiazines are able to overcome multidrug resistance in cultured cells. In this work, the effect of these reversing agents on ATP-dependent vinblastine (VBL) transport by vesicles from drug-resistant KB cells has been characterized. Azidopine was the most potent inhibitor of ATP-dependent VBL uptake tested (ID50: concentration of inhibitor such that the transport of vinblastine is inhibited by 50%, less than 1 microM). Verapamil, quinidine, and the tiapamil analogue RO-11-2933 were potent but less effective inhibitors (ID50 less than 5 microM). Diltiazem, nifedipine and trifluoperazine were even less effective. These agents had no effect on Na(+)-dependent and Na(+)-independent L-leucine uptake by the vesicles, indicating that the inhibition of ATP dependent VBL transport by these agents is not a non-specific effect, as might result from leaks in the vesicle membrane. Verapamil, quinidine, azidopine and trifluoperazine increased the apparent Km value of vinblastine transport, suggesting that these agents may be competitive inhibitors of vinblastine transport. Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Azides; Binding, Competitive; Biological Transport, Active; Carcinoma, Squamous Cell; Cell Membrane; Dihydropyridines; Drug Resistance; Humans; Kinetics; Leucine; Membrane Glycoproteins; Phenothiazines; Quinidine; Trifluoperazine; Tumor Cells, Cultured; Verapamil; Vinblastine | 1991 |