azd3965 and Breast-Neoplasms

azd3965 has been researched along with Breast-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for azd3965 and Breast-Neoplasms

ArticleYear
In Vitro and In Vivo Efficacy of AZD3965 and Alpha-Cyano-4-Hydroxycinnamic Acid in the Murine 4T1 Breast Tumor Model.
    The AAPS journal, 2020, 06-11, Volume: 22, Issue:4

    Monocarboxylate transporter 1 (MCT1) represents a potential therapeutic target in cancer. The objective of this study was to determine the efficacy of AZD3965 (a specific inhibitor of MCT1) and α-cyano-4-hydroxycinnamic acid (CHC, a nonspecific inhibitor of MCTs) in the murine 4T1 tumor model of triple-negative breast cancer (TNBC). Expression of MCT1 and MCT4 in 4T1 and mouse mammary epithelial cells were determined by Western blot. Inhibition of MCT1-mediated L-lactate uptake and cellular proliferation by AZD3965 and CHC was determined. Mice bearing 4T1 breast tumors were treated with AZD3965 100 mg/kg i.p. twice-daily or CHC 200 mg/kg i.p. once-daily. Tumor growth, metastasis, intra-tumor lactate concentration, immune function, tumor MCT expression, and concentration-effect relationships were determined. AZD3965 and CHC inhibited cell growth and L-lactate uptake in 4T1 cells. AZD3965 treatment resulted in trough plasma and tumor concentrations of 29.1 ± 13.9 and 1670 ± 946 nM, respectively. AZD3965 decreased the tumor proliferation biomarker Ki67 expression, increased intra-tumor lactate concentration, and decreased tumor volume, although tumor weight was not different from untreated controls. CHC had no effect on tumor volume and weight, or intra-tumor lactate concentration. AZD3965 treatment reduced the blood leukocyte count and spleen weight and increased lung metastasis, while CHC did not. These findings indicate AZD3965 is a potent MCT1 inhibitor that accumulates to high concentrations in 4T1 xenograft tumors, where it increases tumor lactate concentrations and produces beneficial effects on markers of TNBC; however, overall effects on tumor growth were minimal and lung metastases increased.

    Topics: Animals; Breast Neoplasms; Cell Line, Tumor; Coumaric Acids; Dose-Response Relationship, Drug; Female; Lung Neoplasms; Mice; Mice, Inbred BALB C; Monocarboxylic Acid Transporters; Pyrimidinones; Symporters; Thiophenes; Treatment Outcome; Tumor Burden; Xenograft Model Antitumor Assays

2020
Cellular Uptake of MCT1 Inhibitors AR-C155858 and AZD3965 and Their Effects on MCT-Mediated Transport of L-Lactate in Murine 4T1 Breast Tumor Cancer Cells.
    The AAPS journal, 2019, 01-07, Volume: 21, Issue:2

    AR-C155858 and AZD3965, pyrrole pyrimidine derivatives, represent potent monocarboxylate transporter 1 (MCT1) inhibitors, with potential immunomodulatory and chemotherapeutic properties. Currently, there is limited information on the inhibitory properties of this new class of MCT1 inhibitors. The purpose of this study was to characterize the concentration- and time-dependent inhibition of L-lactate transport and the membrane permeability properties of AR-C155858 and AZD3965 in the murine 4T1 breast tumor cells that express MCT1. Our results demonstrated time-dependent inhibition of L-lactate uptake by AR-C155858 and AZD3965 with maximal inhibition occurring after a 5-min pre-incubation period and prolonged inhibition. Following removal of AR-C155858 or AZD3965 from the incubation buffer, inhibition of L-lactate uptake was only fully reversed after 3 and 12 h, respectively, indicating that these inhibitors are slowly reversible. The uptake of AR-C155858 was concentration-dependent in 4T1 cells, whereas the uptake of AZD3965 exhibited no concentration dependence over the range of concentrations examined. The uptake kinetics of AR-C155858 was best fitted to a Michaelis-Menten equation with a diffusional clearance component, P (K

    Topics: Animals; Breast Neoplasms; Cell Line, Tumor; Coumaric Acids; Drug Screening Assays, Antitumor; Female; Humans; Hydrogen-Ion Concentration; Lactic Acid; Mice; Monocarboxylic Acid Transporters; Pyrimidinones; Symporters; Thiophenes; Uracil

2019
Development and validation of a liquid chromatography tandem mass spectrometry assay for AZD3965 in mouse plasma and tumor tissue: Application to pharmacokinetic and breast tumor xenograft studies.
    Journal of pharmaceutical and biomedical analysis, 2018, Jun-05, Volume: 155

    AZD3965, a pyrole pyrimidine derivative, is a potent and orally bioavailable inhibitor of monocarboxylate transporter 1 (MCT1), currently in a Phase I clinical trial in UK for lymphomas and solid tumors. There is currently no published assay for AZD3965. The objectives of this study were to develop and validate a LC/MS/MS assay for quantifying AZD3965 in mouse plasma and tumor tissue. Protein precipitation with 0.1% formic acid in acetonitrile was used for sample preparation. Chromatographic separation was achieved on a C18 column followed by tandem mass spectrometry detection in multiple reaction monitoring mode with utilizing Atmospheric Pressure Chemical Ionization. AR-C155858 was used as the internal standard. The inter-day and intra-day precision and accuracy of quality control samples evaluated in plasma and tumor tissue were less than ±7% of the nominal concentrations. The extraction recovery, matrix effect and stability values were all within acceptable levels. Sample dilution integrity, accessed by diluting plasma spiked with AZD3965 10-fold with blank plasma, was 101%. The lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were 0.15 ng/mL and 12 μg/mL, respectively, in plasma. The assay of AZD3965 in tumor tissue was also validated with good precision and accuracy. The LLOQ was 0.15 ng/mL in tumor tissue. This assay was successfully applied to pharmacokinetic and murine 4T1 breast tumor xenograft studies of AZD3965 in mice.

    Topics: Acetonitriles; Animals; Atmospheric Pressure; Breast Neoplasms; Cell Line, Tumor; Chromatography, Liquid; Female; Heterografts; Mice; Plasma; Pyrimidines; Pyrimidinones; Reproducibility of Results; Tandem Mass Spectrometry; Thiophenes; Uracil

2018
MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4.
    Cell reports, 2016, Feb-23, Volume: 14, Issue:7

    Monocarboxylate transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here, we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export that when inhibited, enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors, further supporting their use as anti-cancer therapeutics.

    Topics: Animals; Antineoplastic Agents; Biological Transport; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Citric Acid Cycle; Epithelial Cells; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glycolysis; Humans; Lung Neoplasms; Mice; Monocarboxylic Acid Transporters; Muscle Proteins; Oxidative Phosphorylation; Pyrimidinones; Pyruvic Acid; Signal Transduction; Symporters; Thiophenes; Tumor Burden; Xenograft Model Antitumor Assays

2016