azd-6244 has been researched along with Colonic-Neoplasms* in 10 studies
10 other study(ies) available for azd-6244 and Colonic-Neoplasms
Article | Year |
---|---|
Chemotherapeutic effects of MEK kinase inhibitor and BRAF kinase inhibitor on
We analyzed responsiveness of KRAS-mutated CRC cell lines with distinctive MSI status against mitogen-activated protein kinase (MEK) inhibitor (selumetinib; AZD) and/or B-raf proto-oncogene (BRAF) kinase inhibitor (vemurafenib; PLX). The viability of MSI-high (MSI-H) KRAS-mutated LS174T cells treated with AZD or PLX was 24.5 ± 0.9% or 71.4 ± 3.6%, respectively, and the viability of microsatellite stable (MSS) KRAS-mutated SW480 cells for AZD or PLX was 57.4 ± 3.1% or 43.1 ± 1.8%, respectively. These observations imply that the therapeutic efficacy of MEK kinase inhibitors or BRAF kinase inhibitors against KRAS-mutated colon cancer cells may differ between MSI-H and MSS. However, a combination of both inhibitors synergistically inhibits the proliferation of KRAS-mutated colon cancer cells regardless of MSI status. The underlying synergistic cytotoxic efficacy of AZD/PLX combination on KRAS-mutated colon cancer cells with different MSI status was further substantiated by markedly decreased phosphorylation of ERK in both LS74T and SW480 cell lines upon AZD and PLX treatment. Based on these collective data, we propose that MSI status should be considered when MEK kinase inhibitor or BRAF kinase inhibitor is treated for KRAS-mutated colon cancer, and that combination of both inhibitors synergistically inhibit proliferation of KRAS-mutated colon cancer cells independent of MSI status. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Humans; MAP Kinase Kinase Kinases; Microsatellite Instability; Proto-Oncogene Mas; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins p21(ras); Vemurafenib | 2020 |
A novel patient-derived orthotopic xenograft (PDOX) mouse model of highly-aggressive liver metastasis for identification of candidate effective drug-combinations.
Liver metastasis is a recalcitrant disease that usually leads to death of the patient. The present study established a unique patient-derived orthotopic xenograft (PDOX) nude mouse model of a highly aggressive liver metastasis of colon cancer. The aim of the present study was to demonstrate proof-of-concept that candidate drug combinations could significantly inhibit growth and re-metastasis of this recalcitrant tumor. The patient's liver metastasis was initially established subcutaneously in nude mice and the subcutaneous tumor tissue was then orthotopically implanted in the liver of nude mice to establish a PDOX model. Two studies were performed to test different drugs or drug combination, indicating that 5-fluorouracil (5-FU) + irinotecan (IRI) + bevacizumab (BEV) and regorafenib (REG) + selumetinib (SEL) had significantly inhibited liver metastasis growth (p = 0.013 and p = 0.035, respectively), and prevented liver satellite metastasis. This study is proof of concept that a PDOX model of highly aggressive colon-cancer metastasis can identify effective drug combinations and that the model has future clinical potential. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Bevacizumab; Body Weight; Colonic Neoplasms; Fluorouracil; Humans; Irinotecan; Liver Neoplasms, Experimental; Mice, Nude; Phenylurea Compounds; Proof of Concept Study; Pyridines; Xenograft Model Antitumor Assays | 2020 |
Schedule-dependent synergistic effects of 5-fluorouracil and selumetinib in KRAS or BRAF mutant colon cancer models.
Combination of MEK inhibitor and 5-FU had showed limited efficacy in clinical trials. We previously reported that acquired resistance to 5-FU was related with continued activation of salvage pathway. Here we investigated whether combination of 5-FU and a MEK inhibitor had treatment sequence-dependent synergistic effects in KRAS or BRAF mutant colon cancer models. Treatment with 5-FU followed by selumetinib (FS) induced highest cell death and synergy compared with reverse (SF) and concomitant (cFS) treatment in six cell lines. SF or cFS combination induced synergy in 1 or 2 cell lines, respectively, in which the synergy was less than that by FS combination. FS enhanced apoptosis and decreased anchorage-independent growth. Induction of thymidine kinase 1, a rate-limiting enzyme in salvage pathway, by 5-FU was abrogated by subsequent treatment with selumetinib, and ERK reactivation after selumetinib was prohibited by pretreatment with 5-FU. FS altered mRNA expression in groups of genes distinct from SF. Administration of 5-FU (10 or 30 mg/kg/day) for 7 days, followed by selumetinib (10 or 25 mg/kg/day) for another 7 days, in colo205 and HCT8 xenograft models significantly decreased tumor growth compared with a single agent. However, co-administration in the reverse sequence did not show the difference in tumor size compared with the treatment of single agent. Decreased expression of Ki67 was observed in tumors from mice treated with FS. Our results suggest that sequential administration of 5-FU plus selumetinib would be a promising strategy for patients having KRAS or BRAF mutant colon cancers. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzimidazoles; Cell Line, Tumor; Colonic Neoplasms; Drug Administration Schedule; Fluorouracil; Humans; Male; Mice, Inbred BALB C; Mutation; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins p21(ras); Thymidine Kinase; Xenograft Model Antitumor Assays | 2019 |
Combination of MEK Inhibitor and the JAK2-STAT3 Pathway Inhibition for the Therapy of Colon Cancer.
The study aimed to investigate the reason of HCT116 cell resistance to MEK inhibitor, and the combination treatment effects of MEK inhibitor AZD6244 and JAK2/STAT3 inhibitor AG490 on colon cancer in vitro and in vivo, including cell viability, apoptosis, and explore the partial mechanisms focused on AZD6244 promoted the activation of JAK2-STAT3 pathways. In vitro, we examined the HCT116 cell viability by CCK8, cell apoptosis by flow cytometry; Western blot measured p-ERK, p-JAK2, p-STAT3 and STAT3 expression. In vivo, nude mice were subcutaneously injected by HCT116 cells. The tumor volume and weight were detected. HCT116 cell resistance to MEK inhibitor AZD6244, which inhibited the activation of ERK and promoted the activation of JAK2-STAT3 signaling. The combination treatment of AZD6244 and AG490 significantly inhibited cell viability and induced cell apoptosis, and completely inhibited the activation of ERK and JAK2-STAT3 signaling. Combination treatment of AZD6244 and AG490 had a stronger effect than that of AZD6244 as a monotherapy in vitro and in vivo. The treatment of AZD6244 on K-Ras mutations HCT116 cells promoted the activation of JAK2/STAT3 signaling. JAK2/STAT3 inhibitor AG490 synergistically increases effects of AZD6244 on colon cancer in vitro and in vivo. Collectively, these results provide a rationale for combining inhibitors of the JAK/STAT pathway and MEK inhibitors to reduce the potential impact of drug resistance. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Colonic Neoplasms; HCT116 Cells; Humans; Janus Kinase 2; MAP Kinase Kinase Kinases; Mice, Nude; Protein Kinase Inhibitors; Signal Transduction; STAT3 Transcription Factor; Tyrphostins; Xenograft Model Antitumor Assays | 2019 |
MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models.
Activation of the mitogen-activated protein kinase (MAPK) pathway is frequent in cancer. Drug development efforts have been focused on kinases in this pathway, most notably on RAF and MEK. We show here that MEK inhibition activates JNK-JUN signaling through suppression of DUSP4, leading to activation of HER Receptor Tyrosine Kinases. This stimulates the MAPK pathway in the presence of drug, thereby blunting the effect of MEK inhibition. Cancers that have lost MAP3K1 or MAP2K4 fail to activate JNK-JUN. Consequently, loss-of-function mutations in either MAP3K1 or MAP2K4 confer sensitivity to MEK inhibition by disabling JNK-JUN-mediated feedback loop upon MEK inhibition. In a panel of 168 Patient Derived Xenograft (PDX) tumors, MAP3K1 and MAP2K4 mutation status is a strong predictor of response to MEK inhibition. Our findings suggest that cancers having mutations in MAP3K1 or MAP2K4, which are frequent in tumors of breast, prostate and colon, may respond to MEK inhibitors. Our findings also suggest that MAP3K1 and MAP2K4 are potential drug targets in combination with MEK inhibitors, in spite of the fact that they are encoded by tumor suppressor genes. Topics: Animals; Benzimidazoles; Breast Neoplasms; Cell Line, Tumor; Colonic Neoplasms; Drug Resistance, Neoplasm; Female; Heterografts; Humans; Loss of Function Mutation; Male; MAP Kinase Kinase 4; MAP Kinase Kinase Kinase 1; MAP Kinase Signaling System; Mice, Inbred BALB C; Mice, Nude; Mitogen-Activated Protein Kinase Kinases; Prostatic Neoplasms; Protein Kinase Inhibitors | 2018 |
A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers.
Mutations in KRAS are frequent in human cancer, yet effective targeted therapeutics for these cancers are still lacking. Attempts to drug the MEK kinases downstream of KRAS have had limited success in clinical trials. Understanding the specific genomic vulnerabilities of KRAS-driven cancers may uncover novel patient-tailored treatment options.. We first searched for synthetic lethal (SL) genetic interactions with mutant RAS in yeast with the ultimate aim to identify novel cancer-specific targets for therapy. Our method used selective ploidy ablation, which enables replication of cancer-specific gene expression changes in the yeast gene disruption library. Second, we used a genome-wide CRISPR/Cas9-based genetic screen in KRAS mutant human colon cancer cells to understand the mechanistic connection between the synthetic lethal interaction discovered in yeast and downstream RAS signaling in human cells.. We identify loss of the endoplasmic reticulum (ER) stress sensor IRE1 as synthetic lethal with activated RAS mutants in yeast. In KRAS mutant colorectal cancer cell lines, genetic ablation of the human ortholog of IRE1, ERN1, does not affect growth but sensitizes to MEK inhibition. However, an ERN1 kinase inhibitor failed to show synergy with MEK inhibition, suggesting that a non-kinase function of ERN1 confers MEK inhibitor resistance. To investigate how ERN1 modulates MEK inhibitor responses, we performed genetic screens in ERN1 knockout KRAS mutant colon cancer cells to identify genes whose inactivation confers resistance to MEK inhibition. This genetic screen identified multiple negative regulators of JUN N-terminal kinase (JNK) /JUN signaling. Consistently, compounds targeting JNK/MAPK8 or TAK1/MAP3K7, which relay signals from ERN1 to JUN, display synergy with MEK inhibition.. We identify the ERN1-JNK-JUN pathway as a novel regulator of MEK inhibitor response in KRAS mutant colon cancer. The notion that multiple signaling pathways can activate JUN may explain why KRAS mutant tumor cells are traditionally seen as highly refractory to MEK inhibitor therapy. Our findings emphasize the need for the development of new therapeutics targeting JUN activating kinases, TAK1 and JNK, to sensitize KRAS mutant cancer cells to MEK inhibitors. Topics: Antineoplastic Agents; Benzimidazoles; Cell Line, Tumor; Colonic Neoplasms; Endoplasmic Reticulum Stress; Endoribonucleases; HEK293 Cells; Humans; MAP Kinase Kinase Kinases; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-jun; Proto-Oncogene Proteins p21(ras); Pyridones; Pyrimidinones; Unfolded Protein Response; Yeasts | 2018 |
Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.
Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. Topics: Animals; Atrophy; Benzimidazoles; Biomarkers; Body Weight; Cachexia; Cell Line, Tumor; Colonic Neoplasms; Cytokines; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Humans; Inflammation Mediators; Mice; Models, Biological; Muscle, Skeletal; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Tumor Burden; Ubiquitin-Protein Ligases; Xenograft Model Antitumor Assays | 2017 |
Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis.
Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. Topics: Apoptosis; Benzimidazoles; Blotting, Western; Cell Proliferation; Colonic Neoplasms; Gene Expression Regulation, Neoplastic; Humans; MAP Kinase Signaling System; Mutation; Niacinamide; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Sorafenib; Tumor Cells, Cultured | 2016 |
Acute tumour response to the MEK1/2 inhibitor selumetinib (AZD6244, ARRY-142886) evaluated by non-invasive diffusion-weighted MRI.
Non-invasive imaging biomarkers underpin the development of molecularly targeted anti-cancer drugs. This study evaluates tumour apparent diffusion coefficient (ADC), measured by diffusion-weighted magnetic resonance imaging (DW-MRI), as a biomarker of response to the MEK1/2 inhibitor selumetinib (AZD6244, ARRY-142886) in human tumour xenografts.. Nude mice bearing human BRAF(V600D) WM266.4 melanoma or BRAF(V600E) Colo205 colon carcinoma xenografts were treated for 4 days with vehicle or selumetinib. DW-MRI was performed before and 2 h after the last dose and excised tumours analysed for levels of phospho-ERK1/2, cleaved caspase 3 (CC3) and necrosis.. Selumetinib treatment induced tumour stasis and reduced ERK1/2 phosphorylation in both WM266.4 and Colo205 tumour xenografts. Relative to day 0, mean tumour ADC was unchanged in the control groups but was significantly increased by up to 1.6-fold in selumetinib-treated WM266.4 and Colo205 tumours. Histological analysis revealed a significant increase in necrosis in selumetinib-treated WM266.4 and Colo205 xenografts and CC3 staining in selumetinib-treated Colo205 tumours relative to controls.. Changes in ADC following treatment with the MEK1/2 inhibitor selumetinib in responsive human tumour xenografts were concomitant with induction of tumour cell death. ADC may provide a useful non-invasive pharmacodynamic biomarker for early clinical assessment of response to selumetinib and other MEK-ERK1/2 signalling-targeted therapies. Topics: Animals; Benzimidazoles; Cell Line, Tumor; Colonic Neoplasms; Diffusion Magnetic Resonance Imaging; Female; Humans; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Melanoma; Mice; Mice, Nude; Molecular Targeted Therapy; Protein Kinase Inhibitors; Xenograft Model Antitumor Assays | 2013 |
Activation of FOXO3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer.
Drug resistance is a central challenge of cancer therapy that ultimately leads to treatment failure. In this study, we characterized a mechanism of drug resistance that arises to AZD6244, an established mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor currently being evaluated in cancer clinical trials. AZD6244 enhanced the expression of transcription factor FOXO3a, which suppressed cancer cell proliferation. In AZD6244-resistant cancer cells, we observed the impaired nuclear localization of FOXO3a, reduced FOXO3a-mediated transcriptional activity, and decreased the expression of FOXO3a target gene Bim after cell treatment with AZD6244. Resistant cells could be sensitized by phosphoinositide 3-kinase (PI3K)/AKT inhibitors, which are known to enhance FOXO3a nuclear translocation. Our findings define FOXO3a as candidate marker to predict the clinical efficacy of AZD6244. Furthermore, they suggest a mechanism of resistance to MEK inhibitors that may arise in the clinic yet can be overcome by cotreatment with PI3K/AKT inhibitors. Topics: Animals; Apoptosis; Benzimidazoles; Breast Neoplasms; Cell Growth Processes; Cell Line, Tumor; Chlorpropamide; Chromones; Colonic Neoplasms; Drug Resistance, Neoplasm; Drug Synergism; Forkhead Box Protein O3; Forkhead Transcription Factors; HCT116 Cells; HT29 Cells; Humans; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Melanoma; Mice; Morpholines; Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt | 2010 |