azd-1152-hqpa has been researched along with Neoplasms* in 5 studies
2 review(s) available for azd-1152-hqpa and Neoplasms
Article | Year |
---|---|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
The 4-aminoquinazoline core is an interesting pharmacophore and its applications in medicinal chemistry are wide spread. The core has been used for making many kinase inhibitors in past few years. Many researcher demonstrated 4-aminoquinazoline derivatives as specific kinase inhibitors, including tyrosine kinase and serine/theronine kinases. A number of anticancer drugs with 4-aminoquinazoline core are in the market, e.g. gefitinib, erlotinib, afatinib, lapatinib, decomitinib etc. 4-aminoquinazoline derivatives are applied for target specific treatment of lung, breast, colon, prostate cancers. In this review, we discussed the current development of 4-aminoquinazoline derivatives as kinase inhibitors and their uses as anticancer agents in recent years. Topics: Animals; Antineoplastic Agents; Chemistry Techniques, Synthetic; Humans; Neoplasms; Protein Kinase Inhibitors; Quinazolines | 2019 |
Discovery and development of aurora kinase inhibitors as anticancer agents.
Topics: Animals; Antineoplastic Agents; Aurora Kinases; Drug Discovery; Humans; Mitosis; Neoplasms; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases | 2009 |
1 trial(s) available for azd-1152-hqpa and Neoplasms
Article | Year |
---|---|
Safety, tolerability, and pharmacokinetics of Aurora kinase B inhibitor AZD2811: a phase 1 dose-finding study in patients with advanced solid tumours.
AZD2811 is a potent, selective Aurora kinase B inhibitor. We report the dose-escalation phase of a first-in-human study assessing nanoparticle-encapsulated AZD2811 in advanced solid tumours.. AZD2811 was administered in 12 dose-escalation cohorts (2-h intravenous infusion; 15‒600 mg; 21-/28-day cycles) with granulocyte colony-stimulating factor (G-CSF) at higher doses. The primary objective was determining safety and maximum tolerated/recommended phase 2 dose (RP2D).. Fifty-one patients received AZD2811. Drug exposure was sustained for several days post-dose. The most common AZD2811-related adverse events (AEs) were fatigue (27.3%) at ≤200 mg/cycle and neutropenia (37.9%) at ≥400 mg/cycle. Five patients had dose-limiting toxicities: grade (G)4 decreased neutrophil count (n = 1, 200 mg; Days 1, 4; 28-day cycle); G4 decreased neutrophil count and G3 stomatitis (n = 1 each, both 400 mg; Day 1; 21-day cycle); G3 febrile neutropenia and G3 fatigue (n = 1 each, both 600 mg; Day 1; 21-day cycle +G-CSF). RP2D was 500 mg; Day 1; 21-day cycle with G-CSF on Day 8. Neutropenia/neutrophil count decrease were on-target AEs. Best overall responses were partial response (n = 1, 2.0%) and stable disease (n = 23, 45.1%).. At RP2D, AZD2811 was tolerable with G-CSF support. Neutropenia was a pharmacodynamic biomarker.. NCT02579226. Topics: Antineoplastic Agents; Aurora Kinase B; Dose-Response Relationship, Drug; Fatigue; Granulocyte Colony-Stimulating Factor; Humans; Maximum Tolerated Dose; Neoplasms; Neutropenia | 2023 |
2 other study(ies) available for azd-1152-hqpa and Neoplasms
Article | Year |
---|---|
Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor model using matrix-assisted laser desorption ionization mass spectrometry imaging.
Penetration of nanoparticles into viable tumor regions is essential for an effective response. Mass spectrometry imaging (MSI) is a novel method for evaluating the intratumoral pharmacokinetics (PK) of a drug in terms of spatial distribution. The application of MSI for analysis of nanomedicine PK remains in its infancy. In this study, we evaluated the applicability of MALDI-MSI for nanoparticle-formulated drug visualization in tumors and biopsies, with an aim toward future application in clinical nanomedicine research. We established an analytic method for the free drug (AZD2811) and then applied it to visualize nanoparticle-formulated AZD2811. MSI analysis demonstrated heterogeneous intratumoral drug distribution in three xenograft tumors. The intensity of MSI signals correlated well with total drug concentration in tumors, indicating that drug distribution can be monitored quantitatively. Analysis of tumor biopsies indicated that MSI is applicable for analyzing the distribution of nanoparticle-formulated drugs in tumor biopsies, suggesting clinical applicability. Topics: Acetanilides; Animals; Antineoplastic Agents; Cell Line, Tumor; Drug Carriers; Male; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Nanoparticles; Neoplasm Transplantation; Neoplasms; Neoplasms, Experimental; Quinazolines; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization | 2020 |
A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.
The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved preclinical efficacy and tolerability data were generated for the pamoic acid lead formulation, which has been selected for evaluation in a Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT 02579226). This work clearly demonstrates the importance of assessing a wide range of drug release rates during formulation screening as a critical step for new drug product development, and how utilizing hydrophobic ion pairing enabled this promising nanoparticle formulation to proceed into clinical de Topics: Acetanilides; Animals; Antineoplastic Agents; Bone Marrow; Cell Line, Tumor; Cholic Acid; Deoxycholic Acid; Dioctyl Sulfosuccinic Acid; Drug Delivery Systems; Humans; Hydrophobic and Hydrophilic Interactions; Male; Mice, Nude; Nanoparticles; Naphthols; Neoplasms; Organophosphates; Polyethylene Glycols; Prodrugs; Quinazolines; Rats, Nude; Rats, Wistar; Tumor Burden | 2016 |