avibactam has been researched along with Pseudomonas-Infections* in 26 studies
1 review(s) available for avibactam and Pseudomonas-Infections
Article | Year |
---|---|
Ceftazidime/avibactam and ceftolozane/tazobactam for the treatment of extensively drug-resistant Pseudomonas aeruginosa post-neurosurgical infections: three cases and a review of the literature.
Post-neurosurgical infection caused by extensively drug resistant Pseudomonas aeruginosa (XDR-PA) are becoming a matter of great concern due to limited therapeutic options. Although not approved for these indications, the new BetaLactam-BetaLactamase Inhibitor combinations (BLBLIs) could represent a valid salvage treatment. We describe one nosocomial meningitis and two cervical osteomyelitis due to an XDR-PA who were treated with ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T) and review the literature.. The first and the third patients developed an osteomyelitis following cervical stabilization surgery due to an XDR-PA. Although the first patient started treatment with a high dose of C/T, resistance to C/T occurred, so therapy was switched to CZA plus aztreonam. The third patient switched to aztreonam plus CZA due to development of acute kidney injury during therapy with colistin. The second patient had an XDR-PA meningitis following the insertion of an external ventricular catheter and he was treated with C/T plus meropenem and amikacin.. All three cases reported were successfully conservatively treated thanks to the use of the new BLBLIs with different combinations. Only few experiences demonstrated an equally favorable outcome: one patient treated with C/T plus fosfomycin for otogenic meningitis caused by an XDR-PA and another case of XDR-PA post-surgical meningitis with CZA in combination with colistin. Finally, the combination of CZA plus aztreonam has proven to be effective on XDR-PA only in limited mostly in vitro studies.. These recently developed antibiotics, C/T and CZA are promising and complementary therapy options against post-neurosurgical hard-to-treat P. aeruginosa infections. Further prospective real-life studies are required to validate these findings in this special setting. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Cephalosporins; Drug Combinations; Drug Resistance, Multiple, Bacterial; Humans; Male; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2021 |
25 other study(ies) available for avibactam and Pseudomonas-Infections
Article | Year |
---|---|
Evaluation of the Efficacy of Optimized Two-Step-Administration Therapy with Ceftazidime/Avibactam for Treating Extensively Drug-Resistant Pseudomonas aeruginosa Pulmonary Infections: a Pharmacokinetic/Pharmacodynamic Analysis.
The objective of this pharmacokinetic (PK)/pharmacodynamic (PD) analysis was to evaluate the efficacy of different dosing regimens of ceftazidime/avibactam (CZA) for the treatment of pulmonary infections by extensively drug-resistant (XDR) Pseudomonas aeruginosa using optimized two-step administration therapy (OTAT) and traditional infusion (TI). We used Monte Carlo simulations (MCS) to integrate PK parameters with PD parameters to assess the adequacy of CZA dosing in critically ill patients with XDR P. aeruginosa pulmonary infections. Dosing models were as follows: 2.5 g q8h, 2.5 g q6h, 4 g q8h, 4 g q6h, 1.25 g q8h, 1.25 g q6h, and 0.94 g q12h. MCS showed that the cumulative fraction of response of all dosing regimens of OTAT was higher than 90%. The probability of target attainment of all dosing regimens of OTAT at MICs (minimal inhibitory concentrations) between 16 mg/L and 32 mg/L was higher than that of TI. Based on these models, PK/PD goals were met with OTAT regimens, even with high MICs (>16 mg/L) compared to traditional infusion (TI) intervals. Thus, this study indicates that OTAT with sufficient PK exposure could improve the efficacy of CZA in critically ill patients with XDR P. aeruginosa pulmonary infections. Topics: Anti-Bacterial Agents; Ceftazidime; Critical Illness; Humans; Microbial Sensitivity Tests; Pharmaceutical Preparations; Pseudomonas aeruginosa; Pseudomonas Infections | 2023 |
Simultaneous and divergent evolution of resistance to cephalosporin/β-lactamase inhibitor combinations and imipenem/relebactam following ceftazidime/avibactam treatment of MDR Pseudomonas aeruginosa infections.
To describe and characterize the emergence of resistance to ceftolozane/tazobactam, ceftazidime/avibactam and imipenem/relebactam in a patient receiving ceftazidime/avibactam treatment for an MDR Pseudomonas aeruginosa CNS infection.. One baseline (PA1) and two post-exposure (PA2 and PA3) isolates obtained before and during treatment of a nosocomial P. aeruginosa meningoventriculitis were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. The impact on β-lactam resistance of mutations in blaPDC and mexR was determined through cloning experiments and complementation assays.. Isolate PA1 showed baseline resistance mutations in DacB (I354A) and OprD (N142fs) conferring resistance to conventional antipseudomonals but susceptibility to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. Post-exposure isolates showed two divergent ceftazidime/avibactam-resistant phenotypes associated with distinctive mutations affecting the intrinsic P PDC β-lactamase (S254Ins) (PA2: ceftolozane/tazobactam and ceftazidime/avibactam-resistant) or MexAB-OprM negative regulator MexR in combination with modification of PBP3 (PA3: ceftazidime/avibactam and imipenem/relebactam-relebactam-resistant). Cloning experiments demonstrated the role of PDC modification in resistance to ceftolozane/tazobactam and ceftazidime/avibactam. Complementation with a functional copy of the mexR gene in isolate PA3 restored imipenem/relebactam susceptibility.. We demonstrated how P. aeruginosa may simultaneously develop resistance and compromise the activity of new β-lactam/β-lactamase inhibitor combinations when exposed to ceftazidime/avibactam through selection of mutations leading to PDC modification and up-regulation of MexAB-OprM-mediated efflux. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamase Inhibitors; Ceftazidime; Cephalosporinase; Cephalosporins; Drug Combinations; Humans; Imipenem; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2023 |
Poor in vitro activity of ceftazidime/avibactam, ceftolozane/tazobactam, and meropenem/vaborbactam against carbapenem-resistant Pseudomonas aeruginosa in India: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2018-2021.
Topics: Anti-Bacterial Agents; Anti-Infective Agents; Ceftazidime; Cephalosporins; Drug Combinations; Humans; Leadership; Meropenem; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2023 |
Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam and Ceftazidime/Avibactam Resistance during Treatment of MDR/XDR Pseudomonas aeruginosa Infections.
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Bacterial Proteins; beta-Lactamases; Ceftazidime; Cephalosporins; Drug Combinations; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2022 |
Activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa.
To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa β-lactamase mutants.. The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different β-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies.. For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes.. Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Borinic Acids; Carboxylic Acids; Cefepime; Cefiderocol; Ceftazidime; Cephalosporins; Cyclooctanes; Humans; Imipenem; Piperidines; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2022 |
Ceftolozane/Tazobactam and Ceftazidime/Avibactam: An Italian Multi-center Retrospective Analysis of Safety and Efficacy in Children With Hematologic Malignancies and Multi-drug Resistant Gram-negative Bacteria Infections.
Topics: Anti-Bacterial Agents; Ceftazidime; Cephalosporins; Child; Drug Combinations; Drug Resistance, Multiple, Bacterial; Gram-Negative Bacteria; Hematologic Neoplasms; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Retrospective Studies; Tazobactam | 2022 |
Phenotypic and genotypic profile of ceftolozane/tazobactam-non-susceptible, carbapenem-resistant Pseudomonas aeruginosa.
To evaluate the genotypic and ceftazidime/avibactam-susceptibility profiles amongst ceftolozane/tazobactam-non-susceptible (NS), MBL-negative Pseudomonas aeruginosa in a global surveillance programme.. Isolates were collected as part of the ERACE-PA Global Surveillance programme. Carbapenem-resistant P. aeruginosa deemed clinically relevant by the submitting laboratories were included. Broth microdilution MICs were conducted per CLSI standards to ceftolozane/tazobactam, ceftazidime/avibactam, ceftazidime and cefepime. Genotypic carbapenemases were detected using CarbaR and CarbaR NxG (research use only). Isolates negative for carbapenemases by PCR were assessed via WGS. Isolates were included in the analysis if they were ceftolozane/tazobactam-NS and lacked detection of known MBLs.. Of the 807 isolates collected in the ERACE-PA programme, 126 (16%) were ceftolozane/tazobactam-NS and lacked MBLs. Cross-resistance to ceftazidime and cefepime was common, with only 5% and 16% testing susceptible, respectively. Ceftazidime/avibactam retained in vitro activity, with 65% of isolates testing susceptible. GES was the most common enzymology, detected in 57 (45%) isolates, and 89% remained susceptible to ceftazidime/avibactam. Seven isolates harboured KPC and all tested susceptible to ceftazidime/avibactam. In the remaining 62 isolates, WGS revealed various ESBLs or OXA β-lactamases. While 39% remained susceptible to ceftazidime/avibactam, marked variability was observed among the diverse resistance mechanisms.. Ceftazidime/avibactam remained active in vitro against the majority of ceftolozane/tazobactam-NS, MBL-negative P. aeruginosa. Ceftazidime/avibactam was highly active against isolates harbouring GES and KPC β-lactamases. These data highlight the potential clinical utility of genotypic profiling as well as the need to test multiple novel agents when carbapenem-resistant P. aeruginosa are encountered. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Carbapenems; Cefepime; Ceftazidime; Cephalosporins; Drug Combinations; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2022 |
Antimicrobial activities of ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, meropenem/vaborbactam, and comparators against Pseudomonas aeruginosa from patients with skin and soft tissue infections.
The limited armamentarium against multidrug-resistant Gram-negative bacilli led to the development of a new generation of β-lactam/β-lactamase inhibitor combinations (BL/BLI).. To evaluate the in vitro activity of ceftazidime/avibactam, ceftolozane/tazobactam, meropenem/vaborbactam, and imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from patients hospitalized with skin and soft tissue infections (SSTIs) in several countries around the world.. A total of 360 P. aeruginosa isolates were consecutively collected from 47 medical centers located in Western Europe, Eastern Europe, the Asia-Pacific region, and Latin America. Susceptibility testing was performed by broth microdilution method at a monitoring laboratory. EUCAST breakpoints were applied.. Ceftazidime/avibactam (98.3% susceptible), ceftolozane/tazobactam (98.6% susceptible), and imipenem/relebactam (98.3% susceptible) were the most active compounds after colistin (100.0% susceptible) and retained activity against isolates nonsusceptible to piperacillin/tazobactam, meropenem, imipenem, and/or ceftazidime. Meropenem-vaborbactam was active against 94.2% of isolates. Ceftazidime/avibactam was the most active BL/BLI against meropenem-nonsusceptible (92.6% susceptible) and imipenem-resistant (93.8% susceptible) isolates, whereas ceftolozane/tazobactam was the most active BL/BLI against piperacillin/tazobactam-resistant (91.1% susceptible) and ceftazidime-resistant (91.7% susceptible) isolates.. The recently approved BL/BLIs demonstrated potent activity and broad coverage against contemporary P. aeruginosa isolates from patients with SSTIs. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Boronic Acids; Ceftazidime; Cephalosporins; Drug Combinations; Drug Resistance, Multiple, Bacterial; Humans; Imipenem; Meropenem; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Soft Tissue Infections; Tazobactam | 2021 |
Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections.
The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning.. Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections.. Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes.. The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold.. Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Ceftazidime; Cephalosporins; Drug Combinations; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2021 |
The activity of ceftazidime/avibactam against carbapenem-resistant
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamase Inhibitors; Carbapenems; Ceftazidime; Drug Combinations; Drug Resistance, Multiple, Bacterial; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2021 |
The mechanisms underlying an Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Ceftazidime; Drug Combinations; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections | 2021 |
Performance of disc diffusion, MIC gradient tests and Vitek 2 for ceftolozane/tazobactam and ceftazidime/avibactam susceptibility testing of Pseudomonas aeruginosa.
To assess performance of disc diffusion, gradient tests and Vitek 2 system to determine the susceptibility of clinical Pseudomonas aeruginosa strains to ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA).. Two-hundred non-duplicate P. aeruginosa strains isolated by 47 French medical laboratories were selected to cover a wide range of C/T and CZA MICs. Performance of C/T disc (30/10 μg, Bio-Rad), CZA discs (10/4 μg) (Thermo Fisher and Bio-Rad), C/T and CZA gradient tests (Etest, BioMérieux; MIC Test Strip, Liofilchem), and AST-XN12 card of Vitek 2 system (BioMérieux) were compared with a broth microdilution (BMD) method (Thermo Fisher). MIC and disc results were interpreted using current EUCAST breakpoints.. Twenty percent and 17% of strains were resistant to C/T and CZA, respectively. All the methods tested satisfactorily determined the susceptibility of P. aeruginosa to C/T [Category Agreement (CA) ≥95%] except the disc diffusion method. Because of the high rates of Major Errors (MEs) (12.5%), this latter method tends to overestimate the resistance. For CZA, only the gradient tests yielded more than 90% of CA. The Vitek 2 system and disc diffusion misclassified 18.1%, 10.1% (disc Bio-Rad) and 11.9% (disc Thermo Fisher) of susceptible strains, respectively.. The gradient tests (MIC Test Strip and Etest) and Vitek 2 card XN12 performed the best to determine the susceptibility of P. aeruginosa to C/T, whereas gradient tests were an acceptable alternative to BMD to assess CZA susceptibility. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Cephalosporins; Drug Combinations; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2021 |
Acquisition of Extended-Spectrum β-Lactamase GES-6 Leading to Resistance to Ceftolozane-Tazobactam Combination in
A clinical Topics: Amino Acid Substitution; Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactam Resistance; beta-Lactamases; Carbapenems; Ceftazidime; Cephalosporins; Drug Combinations; Gene Expression; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam | 2019 |
A model-based analysis of pharmacokinetic-pharmacodynamic (PK/PD) indices of avibactam against Pseudomonas aeruginosa.
The aim of the present work was to use a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model developed from in vitro time-kill measurements with P. aeruginosa to compare different pharmacodynamic indices derived from simulated human avibactam exposures, with respect to their degree of correlation with the modelled bacterial responses.. A mathematical model of the effect of ceftazidime-avibactam on the growth dynamics of P. aeruginosa was used to simulate bacterial responses to modelled human exposures from fractionated avibactam dosing regimens with a fixed ceftazidime dosing regimen (2 or 8 g q8h as a 2-h infusion). The relatedness of the 24-h change in bacterial density and avibactam exposure parameters was evaluated to determine exposure parameter that closely correlated with bacterial growth/killing responses. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Computer Simulation; Dose-Response Relationship, Drug; Humans; Models, Theoretical; Pseudomonas aeruginosa; Pseudomonas Infections | 2019 |
Evaluation of ceftazidime/avibactam for serious infections due to multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa.
The steady progress in resistance of Pseudomonas aeruginosa (PA) has led to difficulties in treating infections due to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Ceftazidime/avibactam (CAZ/AVI) has in vitro activity against many of these strains, however clinical experience with CAZ/AVI is limited. This study aimed to evaluate the characteristics and outcomes of eight patients with infections due to MDR- or XDR-PA treated with CAZ/AVI, including four strains resistant to ceftolozane/tazobactam.. This was a retrospective descriptive study of patients admitted to a teaching hospital between January 2016 and May 2017 who received CAZ/AVI as initial or continuation therapy for infection due to MDR- and XDR-PA.. The sources of infection were hospital-acquired lower respiratory tract infection in five patients (62.5%) and osteomyelitis, meningitis and catheter-related bacteraemia in one patient each. Clinical cure was achieved in 4 patients (50.0%). The 30-day and 90-day mortality rates were 12.5% and 37.5%, respectively. One patient (12.5%) developed encephalopathy that improved with discontinuation of the drug.. CAZ/AVI may be a valuable option for serious infections due to resistant PA. Topics: Aged; Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Drug Resistance, Multiple, Bacterial; Female; Humans; Male; Microbial Sensitivity Tests; Middle Aged; Pseudomonas aeruginosa; Pseudomonas Infections; Retrospective Studies; Tertiary Care Centers; Treatment Outcome | 2018 |
Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms.
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections. Topics: Azabicyclo Compounds; beta-Lactamase Inhibitors; Drug Resistance, Microbial; Enterobacteriaceae Infections; Humans; Imipenem; Pseudomonas Infections | 2017 |
Prediction of in vivo and in vitro infection model results using a semimechanistic model of avibactam and aztreonam combination against multidrug resistant organisms.
The combination of aztreonam-avibactam is active against multidrug-resistant Enterobacteriaceae that express metallo-β-lactamases. A complex synergistic interaction exists between aztreonam and avibactam bactericidal activities that have not been quantitatively explored. A two-state semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) logistic growth model was developed to account for antimicrobial activities in the combination of bacteria-mediated degradation of aztreonam and the inhibition of aztreonam degradation by avibactam. The model predicted that changing regimens of 2 g aztreonam plus 0.375 and 0.6 g avibactam as a 1-hour infusion were qualitatively similar to that observed from in vivo murine thigh infection and hollow-fiber infection models previously reported in the literature with 24-hour log kill ≥1. The current approach to characterize the effect of avibactam in enhancing aztreonam activity from time-kill study was accomplished by shifting the half-maximal effective concentration (EC Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; beta-Lactamase Inhibitors; Drug Resistance, Multiple, Bacterial; Drug Therapy, Combination; Enterobacteriaceae Infections; Forecasting; Humans; Mice; Microbial Sensitivity Tests; Models, Biological; Pseudomonas Infections | 2017 |
Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection.
Avibactam is a new non-β-lactam β-lactamase inhibitor that shows promising restoration of ceftazidime activity against microorganisms producing Ambler class A extended-spectrum β-lactamases (ESBLs) and carbapenemases such as KPCs, class C β-lactamases (AmpC), and some class D enzymes. To determine optimal dosing combinations of ceftazidime-avibactam for treating infections with ceftazidime-resistant Pseudomonas aeruginosa, pharmacodynamic responses were explored in murine neutropenic thigh and lung infection models. Exposure-response relationships for ceftazidime monotherapy were determined first. Subsequently, the efficacy of adding avibactam every 2 h (q2h) or q8h to a fixed q2h dose of ceftazidime was determined in lung infection for two strains. Dosing avibactam q2h was significantly more efficacious, reducing the avibactam daily dose for static effect by factors of 2.7 and 10.1, whereas the mean percentage of the dosing interval that free drug concentrations remain above the threshold concentration of 1 mg/liter (%fT>C(T) 1 mg/liter) yielding bacteriostasis was similar for both regimens, with mean values of 21.6 (q2h) and 18.5 (q8h). Dose fractionation studies of avibactam in both the thigh and lung models indicated that the effect of avibactam correlated well with %fT>C(T) 1 mg/liter. This parameter of avibactam was further explored for four P. aeruginosa strains in the lung model and six in the thigh model. Parameter estimates of %fT>C(T) 1 mg/liter for avibactam ranged from 0 to 21.4% in the lung model and from 14.1 to 62.5% in the thigh model to achieve stasis. In conclusion, addition of avibactam enhanced the effect of ceftazidime, which was more pronounced at frequent dosing and well related with %fT>C(T) 1 mg/liter. The thigh model appeared more stringent, with higher values, ranging up to 62.5% fT>C(T) 1 mg/liter, required for a static effect. Topics: Animals; Animals, Outbred Strains; Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Colony Count, Microbial; Drug Administration Schedule; Drug Combinations; Female; Lung; Mice; Microbial Sensitivity Tests; Neutropenia; Organ Specificity; Pseudomonas aeruginosa; Pseudomonas Infections; Thigh | 2016 |
Avibactam confers susceptibility to a large proportion of ceftazidime-resistant Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients.
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactam Resistance; beta-Lactamase Inhibitors; Ceftazidime; Cystic Fibrosis; Humans; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections | 2015 |
Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice.
Ceftazidime and the β-lactamase inhibitor avibactam constitute a new, potentially highly active combination in the battle against extended-spectrum-β-lactamase (ESBL)-producing bacteria. To determine possible clinical use, it is important to know the pharmacokinetic profiles of the compounds related to each other in plasma and the different compartments of infection in experimentally infected animals and in humans. We used a neutropenic murine thigh infection model and lung infection model to study pharmacokinetics in plasma and epithelial lining fluid (ELF). Mice were infected with ca. 10(6) CFU of Pseudomonas aeruginosa intramuscularly into the thigh or intranasally to cause pneumonia and were given 8 different (single) subcutaneous doses of ceftazidime and avibactam in various combined concentrations, ranging from 1 to 128 mg/kg of body weight in 2-fold increases. Concomitant samples of serum and bronchoalveolar lavage fluid were taken at up to 12 time points until 6 h after administration. Pharmacokinetics of both compounds were linear and dose proportional in plasma and ELF and were independent of the infection type, with estimated half-lives (standard deviations [SD]) in plasma of ceftazidime of 0.28 (0.02) h and of avibactam of 0.24 (0.04) h and volumes of distribution of 0.80 (0.14) and 1.18 (0.34) liters/kg. The ELF-plasma (area under the concentration-time curve [AUC]) ratios (standard errors [SE]) were 0.24 (0.03) for total ceftazidime and 0.27 (0.03) for unbound ceftazidime; for avibactam, the ratios were 0.20 (0.02) and 0.22 (0.02), respectively. No pharmacokinetic interaction between ceftazidime and avibactam was observed. Ceftazidime and avibactam showed linear plasma pharmacokinetics that were independent of the dose combinations used or the infection site in mice. Assuming pharmacokinetic similarity in humans, this indicates that similar dose ratios of ceftazidime and avibactam could be used for different types and sites of infection. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamase Inhibitors; Bronchoalveolar Lavage Fluid; Ceftazidime; Drug Interactions; Enzyme Inhibitors; Epithelium; Female; Half-Life; Lung Diseases; Mice; Pseudomonas Infections; Thigh | 2015 |
Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model.
This study aimed to determine the efficacy of human-simulated plasma exposures of 2 g ceftazidime plus 0.5 g avibactam every 8 h administered as a 2-h infusion or a ceftazidime regimen that produced a specific epithelial lining fluid (ELF) percentage of the dosing interval in which serum free drug concentrations remain above the MIC (fT>MIC) against 28 Pseudomonas aeruginosa isolates within a neutropenic murine pneumonia model and to assess the impact of host infection on pulmonary pharmacokinetics. The fT>MIC was calculated as the mean and upper end of the 95% confidence limit. Against the 28 P. aeruginosa strains used, the ceftazidime-avibactam MICs were 4 to 64 μg/ml, and those of ceftazidime were 8 to >128 μg/ml. The change in log10 CFU after 24 h of treatment was analyzed relative to that of 0-h controls. Pharmacokinetic studies in serum and ELF were conducted using ceftazidime-avibactam in infected and uninfected mice. Humanized ceftazidime-avibactam doses resulted in significant exposures in the lung, producing reductions of >1 log10 CFU against P. aeruginosa with ceftazidime-avibactam MICs of ≤32 μg/ml (ELF upper 95% confidence limit for fT>MIC [ELF fT>MIC] of ≥19%), except for one isolate with a ceftazidime-avibactam MIC of 16 μg/ml. No efficacy was observed against the isolate with a ceftazidime-avibactam MIC of 64 μg/ml (ELF fT>MIC of 0%). Bacterial reductions were observed with ceftazidime against isolates with ceftazidime MICs of 32 μg/ml (ELF fT>MIC of ≥12%), variable efficacy at ceftazidime MICs of 64 μg/ml (ELF fT>MIC of ≥0%), and no activity at a ceftazidime MIC of 128 μg/ml, where the ELF fT>MIC was 0%. ELF fT>MICs were similar between infected and uninfected mice. Ceftazidime-avibactam was effective against P. aeruginosa, with MICs of up to 32 μg/ml with an ELF fT>MIC of ≥19%. The data suggest the potential utility of ceftazidime-avibactam for treatment of lung infections caused by P. aeruginosa. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Disease Models, Animal; Drug Therapy, Combination; Female; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Pneumonia, Bacterial; Pseudomonas Infections; Treatment Outcome | 2014 |
Supporting the ceftaroline fosamil/avibactam Enterobacteriaceae breakpoint determination using humanised in vivo exposures in a thigh model.
Previous in vivo studies using a human-simulated regimen of ceftaroline/avibactam 600/600mg every 8h (q8h) showed activity against extended-spectrum β-lactamase-, AmpC- and KPC-producing Enterobacteriaceae with minimum inhibitory concentrations (MICs) ≤ 1 μg/mL. Here we sought to determine the efficacy of this human-simulated regimen against organisms with MICs ≥ 1 μg/mL to help determine a breakpoint value that would reliability predict efficacy in humans. In total, 31 isolates (1 Escherichia coli, 9 Klebsiella pneumoniae, 9 Enterobacter cloacae, 1 Citrobacter koseri, 2 Serratia marcescens, 1 Klebsiella oxytoca and 8 Pseudomonas aeruginosa) with ceftaroline/avibactam MICs of 1 to 16 μg/mL were tested in a murine immunocompromised thigh infection model; 15 isolates were also tested in an immunocompetent model. Doses were given to simulate human free drug exposures of ceftaroline fosamil/avibactam 600/600 mg q8h over 24h as a 1-h infusion by targeting the fT>MIC profile. Efficacy was evaluated as the change in log10 CFU compared with 0-h controls after 24h. Reductions in bacterial CFU in the neutropenic model were seen against a majority of isolates tested with MICs ≤ 4 μg/mL, where fT>MIC was >55%. More variable efficacy was seen in isolates with MICs ≥ 8 μg/mL, where fT>MIC drops below 40%. Overall activity was enhanced in the immunocompetent model. The humanised regimen of ceftaroline fosamil/avibactam 600/600 mg q8h as a 1-h infusion showed predictable efficacy against isolates with various genotypic and phenotypic profiles and MICs ≤ 4 μg/mL. These data provide valuable information to help determine a ceftaroline/avibactam breakpoint for Enterobacteriaceae. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Ceftaroline; Cephalosporins; Disease Models, Animal; Enterobacter cloacae; Enterobacteriaceae; Enterobacteriaceae Infections; Escherichia coli; Female; Humans; Klebsiella Infections; Klebsiella pneumoniae; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Reproducibility of Results; Thigh | 2014 |
Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-β-lactamase producers.
Secondary to the stability of aztreonam against metallo-β-lactamases, coupled with avibatam's neutralizing activity against often coproduced extended-spectrum β-lactamases (ESBLs) or AmpC enzymes, the combination of aztreonam and avibactam has been proposed as a principal candidate for the treatment of infections with metallo-β-lactamase-producing Gram-negative organisms. Using the neutropenic-mouse thigh infection model, we evaluated the efficacy of human simulated doses of aztreonam-avibactam and aztreonam against 14 Enterobacteriaceae and 13 Pseudomonas aeruginosa isolates, of which 25 produced metallo-β-lactamases. Additionally, six P. aeruginosa isolates were also evaluated in immunocompetent animals. A humanized aztreonam dose of 2 g every 6 h (1-h infusion) was evaluated alone and in combination with avibactam at 375 or 600 mg every 6 h (1-h infusion), targeting the percentage of the dosing interval in which free-drug concentrations remained above the MIC (fT>MIC). Efficacy was evaluated as the change in bacterial density after 24 h compared with the bacterial density at the initiation of dosing. Aztreonam monotherapy resulted in reductions of two of the Enterobacteriaceae bacterial isolates (aztreonam MIC, ≤ 32 μg/ml; fT>MIC, ≥ 38%) and minimal activity against the remaining isolates (aztreonam MIC, ≥ 128 μg/ml; fT>MIC, 0%). Alternatively, aztreonam-avibactam therapy resulted in the reduction of all 14 Enterobacteriaceae isolates (aztreonam-avibactam MICs, ≤16 μg/ml; fT>MIC, ≥ 65%) and no difference between the 375- and 600-mg doses of avibactam was noted. Similar pharmacodynamically predictable activity against P. aeruginosa was noted in studies with neutropenic and immunocompetent mice, with activity occurring when the MICs were ≤ 16 μg/ml and variable efficacy noted when the MICs were ≥ 32 μg/ml. Again, no difference in efficacy between the 375- and 600-mg doses of avibactam was observed. Aztreonam-avibactam represents an attractive treatment option for infections with metallo-β-lactamase-producing Gram-negative pathogens that coproduce ESBLs or AmpC. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; Bacterial Proteins; beta-Lactamases; Enterobacteriaceae Infections; Escherichia coli; Escherichia coli Infections; Humans; Klebsiella Infections; Klebsiella pneumoniae; Mice; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections | 2013 |
In vitro antibacterial activity of the ceftazidime-avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates.
The β-lactamase inhibitor avibactam (NXL104) displays potent inhibition of both class A and C enzymes. The in vitro antibacterial activity of the combination ceftazidime-avibactam was evaluated against a clinical panel of Pseudomonas aeruginosa isolates. Avibactam offered efficient protection from hydrolysis since 94% of isolates were susceptible to ceftazidime when combined with 4 μg/ml avibactam, compared with 65% susceptible to ceftazidime alone. Ceftazidime-avibactam also demonstrated better antipseudomonal activity than imipenem (82% susceptibility), a common reference treatment. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Bacterial Proteins; beta-Lactamase Inhibitors; beta-Lactamases; Ceftazidime; Drug Combinations; Humans; Imipenem; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections | 2012 |
Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa.
The combination of ceftazidime and avibactam possesses potent activity against resistant Gram-negative pathogens, including Pseudomonas aeruginosa. We compared the efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam using a hollow-fiber system and neutropenic and immunocompetent murine thigh infection models. Twenty-seven clinical P. aeruginosa isolates with ceftazidime MICs of 8 to 128 mg/liter and ceftazidime-avibactam MICs of 4 to 32 mg/liter were utilized in neutropenic mouse studies; 15 of the isolates were also evaluated in immunocompetent mice. Six isolates were studied in both the hollow-fiber system and the neutropenic mouse. In both systems, the free drug concentration-time profile seen in humans given 2 g of ceftazidime every 8 h (2-h infusion), with or without avibactam at 500 mg every 8 h (2-h infusion), was evaluated. In vivo activity was pharmacodynamically predictable based on the MIC. Ceftazidime decreased bacterial densities by ≥0.5 log unit for 10/27 isolates, while ceftazidime-avibactam did so for 22/27 isolates. In immunocompetent animals, enhancements in activity were seen for both drugs, with ceftazidime achieving reductions of ≥0.3 log unit for 10/15 isolates, whereas ceftazidime-avibactam did so against all 15 isolates. In vitro, ceftazidime resulted in regrowth by 24 h against all isolates, while ceftazidime-avibactam achieved stasis or better against 4/7 isolates. Mutants with elevated ceftazidime-avibactam MICs appeared after 24 h from 3/7 isolates studied in vitro; however, no resistant mutants were detected in vivo. Against this highly ceftazidime-nonsusceptible population of P. aeruginosa, treatment with human simulated doses of ceftazidime-avibactam resulted in pharmacodynamically predictable activity, particularly in vivo, against isolates with MICs of ≤16 mg/liter, and this represents a potential new option to combat these difficult-to-treat pathogens. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamase Inhibitors; Ceftazidime; Drug Resistance, Bacterial; Female; Humans; Immunocompetence; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Neutropenia; Pseudomonas aeruginosa; Pseudomonas Infections; Thigh | 2012 |