avibactam has been researched along with Pneumonia--Bacterial* in 4 studies
4 other study(ies) available for avibactam and Pneumonia--Bacterial
Article | Year |
---|---|
Optimization of Aztreonam in Combination With Ceftazidime/Avibactam in a Cystic Fibrosis Patient With Chronic Stenotrophomonas maltophilia Pneumonia Using Therapeutic Drug Monitoring: A Case Study.
In this clinician-therapeutic drug monitoring (TDM) consultant interaction, the authors describe the use of TDM in an 11-year-old female patient with cystic fibrosis receiving ceftazidime/avibactam and aztreonam for the treatment of persistent pulmonary exacerbations caused by Stenotrophomonas pneumonia. Serum drug concentrations at a steady state confirmed inadequate antimicrobial exposure, and continuous infusions of both ceftazidime/avibactam and aztreonam were required to optimize the percentage of time when free drug remained above the minimum inhibitory concentration (MIC), known as fT > MIC. After dose adjustment, this continuous infusion strategy resulted in 100% target attainment for fT > MIC. This case illustrates the importance of TDM, and the logistical issues encountered with the use of alternative dosing strategies in pediatric patients with CF. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; Ceftazidime; Child; Cystic Fibrosis; Drug Combinations; Drug Monitoring; Female; Humans; Microbial Sensitivity Tests; Pneumonia, Bacterial; Stenotrophomonas maltophilia | 2021 |
In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients.
The activities of the novel β-lactam/non-β-lactam β-lactamase inhibitor combination ceftazidime/avibactam and comparators were evaluated against isolates from pneumonia in hospitalised patients including ventilated patients (PHP, pneumonia not designated as VABP; VABP, pneumonia in ventilated patients). Isolates were from the European-Mediterranean region (EuM), China and the USA collected in the SENTRY Antimicrobial Surveillance Program between 2009 and 2011 inclusive. A total of 2393 organisms from PHP were from the EuM, 888 from China and 3213 from the USA; from VABP patients there were 918, 97 and 692 organisms collected, respectively. Among Enterobacteriaceae from PHP, ceftazidime/avibactam MIC90 values against Escherichia coli ranged from 0.25-0.5mg/L and Klebsiella spp. MIC90 values were 0.5mg/L in each region. Among VABP isolates, MIC90 values for ceftazidime/avibactam against E. coli were 0.25mg/L; for Klebsiella spp. from VABP patients, MIC90 values were similar to those obtained against PHP isolates. The MIC of ceftazidime/avibactam was ≤8mg/L against 92-96% of Pseudomonas aeruginosa isolated from PHP patients. Isolates of P. aeruginosa from VABP patients were of lower susceptibility to all antibacterial agents (e.g. depending on region, meropenem susceptibilities were 51.2-69.4% in contrast to 68.3-76.7% among PHP patients). However, ceftazidime/avibactam inhibited 79.2-95.4% of VABP isolates at an MIC of ≤8mg/L. Acinetobacter spp. were resistant to many agents and only rates of susceptibility to colistin were >90% across all regions both for PHP and VABP isolates. Ceftazidime/avibactam was generally active against a high proportion of isolates resistant to ceftazidime from PHP and VAPB patients. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Cross Infection; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Hospitalization; Humans; Microbial Sensitivity Tests; Pneumonia, Bacterial; Respiration, Artificial | 2016 |
Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model.
This study aimed to determine the efficacy of human-simulated plasma exposures of 2 g ceftazidime plus 0.5 g avibactam every 8 h administered as a 2-h infusion or a ceftazidime regimen that produced a specific epithelial lining fluid (ELF) percentage of the dosing interval in which serum free drug concentrations remain above the MIC (fT>MIC) against 28 Pseudomonas aeruginosa isolates within a neutropenic murine pneumonia model and to assess the impact of host infection on pulmonary pharmacokinetics. The fT>MIC was calculated as the mean and upper end of the 95% confidence limit. Against the 28 P. aeruginosa strains used, the ceftazidime-avibactam MICs were 4 to 64 μg/ml, and those of ceftazidime were 8 to >128 μg/ml. The change in log10 CFU after 24 h of treatment was analyzed relative to that of 0-h controls. Pharmacokinetic studies in serum and ELF were conducted using ceftazidime-avibactam in infected and uninfected mice. Humanized ceftazidime-avibactam doses resulted in significant exposures in the lung, producing reductions of >1 log10 CFU against P. aeruginosa with ceftazidime-avibactam MICs of ≤32 μg/ml (ELF upper 95% confidence limit for fT>MIC [ELF fT>MIC] of ≥19%), except for one isolate with a ceftazidime-avibactam MIC of 16 μg/ml. No efficacy was observed against the isolate with a ceftazidime-avibactam MIC of 64 μg/ml (ELF fT>MIC of 0%). Bacterial reductions were observed with ceftazidime against isolates with ceftazidime MICs of 32 μg/ml (ELF fT>MIC of ≥12%), variable efficacy at ceftazidime MICs of 64 μg/ml (ELF fT>MIC of ≥0%), and no activity at a ceftazidime MIC of 128 μg/ml, where the ELF fT>MIC was 0%. ELF fT>MICs were similar between infected and uninfected mice. Ceftazidime-avibactam was effective against P. aeruginosa, with MICs of up to 32 μg/ml with an ELF fT>MIC of ≥19%. The data suggest the potential utility of ceftazidime-avibactam for treatment of lung infections caused by P. aeruginosa. Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Disease Models, Animal; Drug Therapy, Combination; Female; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Pneumonia, Bacterial; Pseudomonas Infections; Treatment Outcome | 2014 |
Microbiological interaction studies between ceftazidime-avibactam and pulmonary surfactant and between ceftazidime-avibactam and antibacterial agents of other classes.
For an antibacterial agent to be considered for clinical studies in nosocomial pneumonia (NP), it should be active in the presence of pulmonary surfactant. Furthermore, owing to the common practice of treating such infections with more than one antibacterial agent, it should be free of antagonistic interactions with agents of other classes. The aim of this study was to demonstrate the effect of pulmonary surfactant on the activity of ceftazidime and ceftazidime-avibactam and to determine the interaction (if any) of ceftazidime-avibactam and six antimicrobial agents common in the treatment of NP. Minimum inhibitory concentration (MIC) determination for ceftazidime and ceftazidime-avibactam was performed with and without the presence of four concentrations of bovine pulmonary surfactant, and a chequerboard assay was used to determine any interaction between ceftazidime and ceftazidime-avibactam with tobramycin, levofloxacin, linezolid, vancomycin, tigecycline and colistin. Here we report that the in vitro antimicrobial activity of ceftazidime-avibactam against β-lactamase-producing Gram-negative bacteria remained unaltered in the presence of pulmonary surfactant at concentrations that antagonised the antimicrobial activity of daptomycin. Furthermore, in chequerboard interaction studies, an absence of antagonism was demonstrated between ceftazidime-avibactam and six antimicrobial agents of different classes when tested against aerobic species frequently isolated from NP. The results support the further investigation of ceftazidime-avibactam as a potential treatment for NP caused by susceptible bacteria. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactamases; Ceftazidime; Cross Infection; Drug Therapy, Combination; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Microbial Sensitivity Tests; Minocycline; Pneumonia, Bacterial; Pulmonary Surfactants; Tigecycline; Tobramycin | 2014 |