ave-0991 and Asthma

ave-0991 has been researched along with Asthma* in 2 studies

Other Studies

2 other study(ies) available for ave-0991 and Asthma

ArticleYear
Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 137

    Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear.. We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways.. Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE).. Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways.. Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.

    Topics: Acute Disease; Angiotensin I; Animals; Asthma; Chemokine CCL2; Cytokines; Imidazoles; Inflammation; Macrophage Activation; Macrophages; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Ovalbumin; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory System

2021
AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma.
    British journal of pharmacology, 2013, Volume: 170, Issue:4

    AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1-7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation.. We used BALB/c mice (6-8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse(-1) , i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg(-1) ·per day, s.c.) or saline (100 μL·kg(-1) ·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates.. Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs.. AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1-7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma.

    Topics: Airway Remodeling; Angiotensin I; Angiotensin II; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Chronic Disease; Cytokines; Disease Models, Animal; Hypertrophy, Right Ventricular; Imidazoles; Lung; Male; Mice; Mice, Inbred BALB C; Molecular Mimicry; Ovalbumin; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Artery; Pulmonary Veins; Receptors, G-Protein-Coupled; Time Factors

2013