aurapten has been researched along with Colorectal-Neoplasms* in 3 studies
3 other study(ies) available for aurapten and Colorectal-Neoplasms
Article | Year |
---|---|
Anti-tumor effects of Auraptene through induction of apoptosis and oxidative stress in a mouse model of colorectal cancer.
The main strategy of cancer cells for survival is uncontrolled cell division and escape from apoptosis. The use of anticancer agents inducing the production of reactive oxygen species (ROS) and controlling cell division might be a therapeutic approach to eradicate cancer cells. Herein, we examined the therapeutic effects of Auraptene on CT26 cells as well as on a mouse model of colorectal cancer (CRC). The spheroid assay was also conducted to analyze the anti-proliferative activity of Auraptene. We also assessed the in vitro analysis of ROS generation. The impact of Auraptene on oxidant/antioxidant markers, as well as the mRNA expression of Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin genes, was evaluated by qPCR in tumor samples. As a result, Auraptene significantly reduced the size of CT26 spheroids at a dose of 200 µM. After 12 h, ROS levels were significantly elevated in CT26 cells. The administration of Auraptene induced apoptosis and the cell cycle arrest by modulating Bax, Bcl-2, Nrf2, Cyclin D1, and Survivin mRNA levels. Furthermore, our results demonstrated that Auraptene suppressed CAT, GSH (reduced Glutathione), and FRAP while increasing MDA in tissue homogenates which in turn could raise oxidative stress and stimulate apoptosis. Therefore, Auraptene may act as a powerful adjuvant therapy in CRC since it triggers apoptosis and cell cycle. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Proliferation; Colorectal Neoplasms; Coumarins; Cyclin D1; Disease Models, Animal; Mice; NF-E2-Related Factor 2; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Survivin | 2023 |
Synergy between Auraptene, Ionizing Radiation, and Anticancer Drugs in Colon Adenocarcinoma Cells.
Colorectal cancer is a growing health concern with increasing mortality rates, and resistance to anticancer drugs and radiotherapy is a serious drawback in its treatment. Auraptene is a natural prenyloxycoumarin with valuable anticancer effects. The aim of current study was to determine the synergy between auraptene, ionizing radiation, and chemotherapeutic drugs in colon adenocarcinoma cells for the first time. To do so, HT29 cells were treated with combination of auraptene + cisplatin, + doxorubicin, or + vincristine. Furthermore, cells were pretreated with nontoxic auraptene and then exposed to various doses of X-radiation. Assessment of cell viability not only indicated significant (p < 0.05) synergic effects of auraptene and anticancer agents, also revealed more significant (p < 0.01) increase in the toxicity of applied radiations in auraptene pretreated cells. Interesting synergy between auraptene and radiotherapy was then confirmed by morphological alterations, DAPI staining, and flow cytometric analysis of the cell cycle. Moreover, real-time reverse transcription polymerase chain reaction analysis indicated significant (p < 0.01) overexpression of p21, but not GATA6, in auraptene pretreated cells after radiotherapy, and also significant (p < 0.01) down regulation of CD44 and ALDH1 by auraptene. According to present results, auraptene could be considered as an effective natural coumarin to improve the outcome of current chemoradiotherapy options. Copyright © 2017 John Wiley & Sons, Ltd. Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Cell Division; Cisplatin; Colonic Neoplasms; Colorectal Neoplasms; Coumarins; Doxorubicin; Drug Synergism; HT29 Cells; Humans; Radiation, Ionizing; Vincristine | 2017 |
Colorectal cancer chemoprevention by 2 beta-cyclodextrin inclusion compounds of auraptene and 4'-geranyloxyferulic acid.
The inhibitory effects of novel prodrugs, inclusion complexes of 3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans propenoic acid (GOFA) and auraptene (AUR) with beta-cyclodextrin (CD), on colon carcinogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Male CD-1 (ICR) mice initiated with a single intraperitoneal injection of AOM (10 mg/kg body weight) were promoted by the addition of 1.5% (w/v) DSS to their drinking water for 7 days. They were then given a basal diet containing 2 dose levels (100 and 500 ppm) of GOFA/beta-CD or AUR/beta-CD for 15 weeks. At Week 18, the development of colonic adenocarcinoma was significantly inhibited by feeding with GOFA/beta-CD at dose levels of 100 ppm (63% reduction in multiplicity, p < 0.05) and 500 ppm (83% reduction in the multiplicity, p < 0.001), when compared with the AOM/DSS group (multiplicity: 3.36 +/- 3.34). In addition, feeding with 100 and 500 ppm (p < 0.01) of AUR/beta-CD suppressed the development of colonic adenocarcinomas. The dietary administration with GOFA/beta-CD and AUR/beta-CD inhibited colonic inflammation and also modulated proliferation, apoptosis and the expression of several proinflammatory cytokines, such as nuclear factor-kappaB, tumor necrosis factor-alpha, Stat3, NF-E2-related factor 2, interleukin (IL)-6 and IL-1beta, which were induced in the adenocarcinomas. Our findings indicate that GOFA/beta-CD and AUR/beta-CD, especially GOFA/beta-CD, are therefore able to inhibit colitis-related colon carcinogenesis by modulating inflammation, proliferation and the expression of proinflammatory cytokines in mice. Topics: Animals; beta-Cyclodextrins; Colonic Neoplasms; Colorectal Neoplasms; Coumarins; Diterpenes; Humans; Immunohistochemistry; Incidence; Inflammation; Inflammatory Bowel Diseases; Inhibitor of Apoptosis Proteins; Interleukin-1beta; Interleukin-6; Male; Mice; Mice, Inbred ICR; Microtubule-Associated Proteins; NF-kappa B; Proliferating Cell Nuclear Antigen; Propionates; Repressor Proteins; Survivin; Tumor Necrosis Factor-alpha | 2010 |