atrial-natriuretic-factor has been researched along with Cytomegalovirus-Infections* in 1 studies
1 other study(ies) available for atrial-natriuretic-factor and Cytomegalovirus-Infections
Article | Year |
---|---|
Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4.
Senescence-associated pathological cardiac hypertrophy (SA-PCH) is associated with upregulation of foetal genes, fibrosis, senescence-associated secretory phenotype (SASP), cardiac dysfunction and increased morbidity and mortality. Therefore, we conducted experiments to investigate whether GATA4 accumulation induces SA-PCH, and whether Bmi-1-RING1B promotes GATA4 ubiquitination and its selective autophagic degradation to prevent SA-PCH.. Bmi-1-deficient (Bmi-1. Bmi-1-RING1B maintained cardiac function and prevented SA-PCH by promoting selective autophagy for degrading GATA4.. AAV9-CMV-Bmi-1-RING1B could be used for translational gene therapy to ubiquitinate GATA4 and prevent GATA4-dependent SA-PCH. Also, the combined domains between Bmi-1-RING1B and GATA4 in aging cardiomyocytes could be therapeutic targets for identifying stapled peptides in clinical applications to promote the combination of Bmi-1-RING1B with GATA4 and the ubiquitination of GATA4 to prevent SA-PCH and heart failure. We found that degradation of cardiac GATA4 by Bmi-1 was mainly dependent on autophagy rather than proteasome, and autophagy agonists metformin and rapamycin could ameliorate the SA-PCH, suggesting that activation of autophagy with metformin or rapamycin could also be a promising method to prevent SA-PCH. Topics: Animals; Atrial Natriuretic Factor; Autophagy; Cardiomegaly; Cytomegalovirus Infections; GATA4 Transcription Factor; Metformin; Mice; Myocytes, Cardiac; Polycomb Repressive Complex 1; Proteasome Endopeptidase Complex; Proto-Oncogene Proteins; Sirolimus; Ubiquitin-Protein Ligases | 2022 |