atractylenolide-i and Lung-Neoplasms

atractylenolide-i has been researched along with Lung-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for atractylenolide-i and Lung-Neoplasms

ArticleYear
Repression of PDK1- and LncRNA HOTAIR-Mediated EZH2 Gene Expression Contributes to the Enhancement of Atractylenolide 1 and Erlotinib in the Inhibition of Human Lung Cancer Cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2018, Volume: 49, Issue:4

    We previously showed that the major bioactive compound of Atractylodes macrocephula Koidz atractylenolide 1 (ATL-1) inhibited human lung cancer cell growth by suppressing the gene expression of 3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1). However, the potentially associated molecules and downstream effectors of PDK1 underlying this inhibition, particularly the mechanism for enhancing the anti-tumor effects of epidermal growth factor receptor-tyrosine-kinase inhibitors (EGFR-TKIs), remain unknown.. Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Western blot analyses were performed to examine the protein expressions of PDK1 and of zeste homolog 2 (EZH2). The levels of long non-coding RNA (lncRNA) and HOX transcript antisense RNA (HOTAIR) were examined via qRT-PCR. RNA-binding protein immunoprecipitation assays were used to analyze HOTAIR interaction with EZH2. The promoter activity of the EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. Exogenous expressions of PDK1, HOTAIR, and EZH2 were conducted via transient transfection assays. A xenografted tumor model was used to further evaluate the effect of ATL-1 in the presence or absence of erlotinib in vivo.. We showed that the combination of ATL-1 and EGFR-TKI erlotinib further inhibited growth and induced cell arrest of the human lung cancer cells, determined by both MTT and flow cytometry assays. ATL-1 inhibited the protein expression and the promoter activity of EZH2, which was reversed in cells with PDK1 overexpression. Interestingly, ATL-1 inhibited the expression levels of HOTAIR. While silencing HOTAIR inhibited the expressions of PDK1 and EZH2, overexpression of HOTAIR reduced the ATL-1-reduced PDK1 and EZH2 protein expressions and EZH2 promoter activity. In addition, ATL-1 reduced the HOTAIR binding to the EZH2 protein. Moreover, we found that exogenously expressed EZH2 antagonized the effect of ATL-1 on cell growth inhibition. Consistent with the in vitro results, ATL-1 inhibited tumor growth and the expression levels of HOTAIR, protein expressions of EZH2 and PDK1 in vivo. Importantly, there was synergy of the combination of ATL-1 and erlotinib in this process.. Here, we provide the first evidence that ATL-1 inhibits lung cancer cell growth through inhibiting not only the PDK1 but also the lncRNA HOTAIR, which results in the reduction of one downstream effector EZH2 expression. The novel interplay between the HOTAIR and EZH2, as well as repressions of the PDK1 and HOTAIR coordinate the overall effects of ATL-1. Importantly, the combination of ATL-1 and EGFR-TKI erlotinib exhibits synergy. Thus, targeting the PDK1- and HOTAIR-mediated downstream molecule EZH2 by the combination of ATL-1 and erlotinib potentially facilitates the development of an additional novel strategy to combat lung cancer.

    Topics: 3-Phosphoinositide-Dependent Protein Kinases; Animals; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Enhancer of Zeste Homolog 2 Protein; Erlotinib Hydrochloride; Female; Gene Expression Regulation, Neoplastic; Humans; Lactones; Lung Neoplasms; Mice; Mice, Nude; Protein Kinase Inhibitors; RNA Interference; RNA, Long Noncoding; RNA, Small Interfering; Sesquiterpenes

2018
Activation of ERK and Mutual Regulation of Stat3 and SP1 Contribute to Inhibition of PDK1 Expression by Atractylenolide-1 in Human Lung Cancer Cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017, Volume: 43, Issue:6

    Atractylodes macrocephula Koidz is an important ingredient in traditional Chinese herbs. One major bioactive compound, atractylenolide-1 (ATL-1), was reported to have anti-inflammatory and anti-tumor activities. However, the underlying molecular mechanism associated to this has not been well elucidated.. Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Western blot analysis was performed to examine the phosphorylation and protein expression of extracellular signaling-regulated kinase 1/2 (ERK1/2), signal transducer and activator of transcription 3 (Stat3), 3-phosphoinositide dependent protein kinase-1 (PDK1) and transcription factor SP1. QRT-PCR was used to examine the mRNA levels of PDK1 gene. Exogenously expressions of Stat3, PDK1 and SP1 were carried out by transient transfection assays. PDK1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. A nude mice xenograft model was used to confirm the findings in vitro.. We showed that ATL-1 inhibited human lung cancer cell growth and induced cell cycle arrest. Furthermore, we found that ATL-1 stimulated phosphorylation of ERK1/2, inhibited phosphorylation and protein expressions of Stat3 and SP1; the latter were abrogated in the presence of MEK/ERK inhibitor PD98059. Moreover, ATL-1 reduced the protein, mRNA expression and promoter activity of PDK1. Intriguingly, exogenously expressed Stat3 and SP1 overcame ATL-1-inhibited SP1 and Stat3, and PDK1 protein expressions, respectively. Moreover, overexpression of PDK1 resisted the ATL-1-inhibited lung cancer cell growth. In consistent with the results in vitro, ATL-1 inhibited tumor growth, protein expressions of Stat3, SP1 and PDK1, and induced phosphorylation of ERK1/2 in vivo.. In summary, our results show that ATL-1 inhibits lung cancer cell growth through activation of ERK1/2, followed by suppressing SP1 protein expression. ATL-1 also reduces phosphorylation and protein levels of Stat3. These are mutual regulation between Stat3 and SP1 proteins affected by ATL-1. This ultimately suppresses PDK1 gene expression. This study reveals a novel mechanism by which ATL-1 inhibits growth of lung cancer cells. Thus, targeting PDK1 pinpoints a potential in the lung cancer treatment.

    Topics: A549 Cells; Animals; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Female; Flavonoids; Gene Expression Regulation, Neoplastic; Humans; Lactones; Luminescent Measurements; Lung Neoplasms; Mice, Nude; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Phosphorylation; Promoter Regions, Genetic; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Pyruvate Dehydrogenase Acetyl-Transferring Kinase; Sesquiterpenes; Sp1 Transcription Factor; STAT3 Transcription Factor; Transplantation, Heterologous

2017
Anti-tumor effects of atractylenolide I isolated from Atractylodes macrocephala in human lung carcinoma cell lines.
    Molecules (Basel, Switzerland), 2013, Oct-29, Volume: 18, Issue:11

    Atractylenolide I (ATL-1) is the major sesquiterpenoid of Atractylodes macrocephala. This study was designed to investigate whether ATL-1 induced apoptosis in A549 and HCC827 cells in vitro and in vivo. In our results, ATL-1 significantly decreased the percentage of in vitro viability, in a dose-dependent manner. In addition, DAPI staining and flow cytometry tests demonstrated the induction of apoptosis by ATL-I. Western blot analysis indicated that the protein levels of caspase-3, caspase-9 and Bax were increased in A549 and HCC827 cells after ATL-I exposure; to the contrary, the expressions of Bcl-2, Bcl-XL were decreased after treatment with ATL-1. In the in vivo study, ATL-I effectively suppressed tumor growth (A549) in transplanted tumor nude mice with up-regulation of caspase-3, caspase-9, and Bax and down-regulation of Bcl-2 and Bcl-XL. In conclusion, our results demonstrated that ATL-I has significant antitumor activity in lung carcinoma cells, and the possible mechanism of action may be related to apoptosis induced by ATL-I via a mitochondria-mediated apoptosis pathway.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Atractylodes; bcl-X Protein; Carcinoma; Caspase 3; Caspase 9; Cell Line, Tumor; Cell Survival; Humans; Lactones; Lung Neoplasms; Mice; Mice, Nude; Proto-Oncogene Proteins c-bcl-2; Sesquiterpenes

2013