atosiban and Tachycardia

atosiban has been researched along with Tachycardia* in 2 studies

Other Studies

2 other study(ies) available for atosiban and Tachycardia

ArticleYear
A functional selective effect of oxytocin secreted under restraint stress in rats.
    European journal of pharmacology, 2021, Aug-05, Volume: 904

    Restraint stress (RS) is an unavoidable stress model that triggers activation of the autonomic nervous system, endocrine activity, and behavioral changes in rodents. Furthermore, RS induces secretion of oxytocin into the bloodstream, indicating a possible physiological role in the stress response in this model. The presence of oxytocin receptors in vessels and heart favors this possible idea. However, the role of oxytocin secreted in RS and effects on the cardiovascular system are still unclear. The aim of this study was to analyze the influence of oxytocin on cardiovascular effects during RS sessions. Rats were subjected to pharmacological (blockade of either oxytocin, vasopressin, or muscarinic receptors) or surgical (hypophysectomy or sinoaortic denervation) approaches to study the functional role of oxytocin and its receptor during RS. Plasma levels of oxytocin and vasopressin were measured after RS. RS increased arterial pressure, heart rate, and plasma oxytocin content, but not vasopressin. Treatment with atosiban (a Gi biased agonist) inhibited restraint-evoked tachycardia without affecting blood pressure. However, this effect was no longer observed after sinoaortic denervation, homatropine (M2 muscarinic antagonist) treatment or hypophysectomy, indicating that parasympathetic activation mediated by oxytocin secreted to the periphery is responsible for blocking the increase in tachycardic responses observed in the atosiban-treated group. Corroborating this, L-368,899 (oxytocin antagonist) treatment showed an opposite effect to atosiban, increasing tachycardic responses to restraint. Thus, this provides evidence that oxytocin secreted to the periphery attenuates tachycardic responses evoked by restraint via increased parasympathetic activity, promoting cardioprotection by reducing the stress-evoked heart rate increase.

    Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Baroreflex; Blood Pressure; Heart Rate; Male; Muscarinic Agonists; Oxytocin; Parasympatholytics; Rats, Wistar; Receptor, Muscarinic M2; Receptors, Vasopressin; Restraint, Physical; Stress, Psychological; Tachycardia; Tropanes; Vasopressins; Vasotocin

2021
Central oxytocin modulates exercise-induced tachycardia.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2000, Volume: 278, Issue:6

    We have shown that vasopressinergic projections to dorsal brain stem are activated during exercise and facilitate exercise tachycardia in both trained (T) and sedentary (S) rats (Dufloth DL, Morris M, and Michelini LC. Am J Physiol Regulatory Integrative Comp Physiol 273: R1271-R1282, 1997). In the present study, we investigated whether oxytocinergic projections to the nucleus of the solitary tract (NTS)-dorsal motor nucleus of the vagus (DMV) complex (NTS/DMV) are involved in the differential heart rate (HR) response to exercise in T and S rats. Arterial pressure (AP) and HR responses to dynamic exercise (0.4-1.4 km/h) were compared in S and T pretreated with vehicle (saline), oxytocin (OT; 20 pmol/200 nl) or OT-receptor antagonist (OT(ant); 20 pmol/200 nl) into the NTS/DMV. OT content in specific brain regions and plasma were measured in separate S and T groups at rest and immediately after exercise. Exercise increased OT content in dorsal (4.5-fold) and ventral brain stem (2.7-fold) and spinal cord (3.4-fold) only in T rats. No significant changes were observed in neurosecretory regions or medial eminence and posterior pituitary, but plasma levels of T rats were reduced immediately after exercise. Blockade of NTS/DMV OT receptors did not change basal mean AP (MAP) and HR or the MAP response to exercise. However, OT(ant) potentiated exercise-induced tachycardia (average increase of 26%) only in the T group. Pretreatment with exogenous OT in the NTS/DMV blunted the tachycardic response both in S and T rats without changing the MAP response. Administration of OT-receptor antagonist or OT into the fourth cerebral ventricle had no effect on the cardiovascular response to dynamic exercise. Taken together, the results suggest that oxytocinergic projections to the NTS/DMV are stimulated when T rats exercise and that OT released at this level acts on OT receptors to restrain exercise-induced tachycardia.

    Topics: Animals; Blood Pressure; Conditioning, Psychological; Consciousness; Fourth Ventricle; Heart Rate; Hormone Antagonists; Injections, Intraventricular; Locomotion; Male; Microinjections; Motor Neurons; Oxytocin; Physical Conditioning, Animal; Physical Exertion; Rats; Rats, Inbred WKY; Receptors, Oxytocin; Solitary Nucleus; Tachycardia; Vagus Nerve; Vasotocin

2000