atosiban and Pain

atosiban has been researched along with Pain* in 3 studies

Other Studies

3 other study(ies) available for atosiban and Pain

ArticleYear
Experiencing neonatal maternal separation increased pain sensitivity in adult male mice: Involvement of oxytocinergic system.
    Neuropeptides, 2017, Volume: 61

    Early-life stress adversely affects the development of the brain, and alters a variety of behaviors such as pain in later life. In present study, we investigated how early-life stress (maternal separation or MS) can affect the nociceptive response later in life. We particularly focused on the role of oxytocin (OT) in regulating nociception in previously exposed (MS during early postnatal development) mice that were subjected to acute stress (restraint stress or RS). Further, we evaluated whether such modulation of pain sensation in MS mice are regulated by shared mechanisms of the OTergic and opioidergic systems. To do this, we assessed the underlying systems mediating the nociceptive response by administrating different antagonists (for both opioid and OTergic systems) under the different experimental conditions (control vs MS, and control plus RS vs MS plus RS). Our results showed that MS increased pain sensitivity in both tail-flick and hot-plate tests while after administration of OT (1μg/μl/mouse, i.c.v) pain threshold was increased. Atosiban, an OT antagonist (10μg/μl/mouse, i.c.v) abolished the effects of OT. While acute RS increased the pain threshold in control (and not MS) mice, treating MS mice with OT normalized the pain response to RS. This latter effect was reversed by atosiban and/or naltrexone, an opioid antagonist (0.5μg/μl/mouse, i.c.v) suggesting that OT enhances the effect of endogenous opioids. OTergic system is involved in mediating the nociception under acute stress in mice subjected to early-life stress and OTergic and opioidergic systems interact to modulate pain sensitivity in MS mice.

    Topics: Analgesics, Opioid; Animals; Female; Hormone Antagonists; Male; Maternal Deprivation; Mice; Naltrexone; Oxytocin; Pain; Pain Threshold; Stress, Psychological; Vasotocin

2017
Involvement of oxytocin in spinal antinociception in rats with inflammation.
    Brain research, 2003, Sep-05, Volume: 983, Issue:1-2

    The present study was conducted on rats with inflammation induced by subcutaneous injection of carrageenan into the left hindpaw. Intrathecal administration of oxytocin produced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats with inflammation. The antinociceptive effect of oxytocin was blocked by intrathecal administration of atosiban, a selective oxytocin antagonist, indicating that oxytocin receptor mediates oxytocin-induced antinociception in the spinal cord. The oxytocin-induced antinociceptive effect was attenuated by intrathecal administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Furthermore, the antinociceptive effect of oxytocin was attenuated by intrathecal injections of the mu-receptor antagonist beta-funaltrexamine and the kappa-receptor antagonist nor-binaltorphimine, but not by the delta-receptor antagonist naltrindole, illustrating that mu- and kappa-receptors, but not delta-receptor, are involved in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Moreover, intrathecal administration of atosiban alone induced a hyperalgesia in rats with inflammation, indicating that endogenous oxytocin is involved in the transmission and regulation of nociceptive information in the spinal cord of rats with inflammation. The present study showed that both exogenous and endogenous oxytocin displayed antinociception in the spinal cord in rats with inflammation, and mu- and kappa-receptors were involved in oxytocin-induced antinociception.

    Topics: Analgesics; Animals; Carrageenan; Hot Temperature; Inflammation; Injections, Spinal; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oxytocin; Pain; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Spinal Cord; Vasotocin

2003
Oxytocin increases and a specific oxytocin antagonist decreases pain threshold in male rats.
    Acta physiologica Scandinavica, 1992, Volume: 144, Issue:4

    Topics: Animals; Male; Nociceptors; Oxytocin; Pain; Rats; Rats, Inbred Strains; Sensory Thresholds; Vasotocin

1992