atosiban and Inflammation

atosiban has been researched along with Inflammation* in 3 studies

Other Studies

3 other study(ies) available for atosiban and Inflammation

ArticleYear
Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation.
    Progress in neuro-psychopharmacology & biological psychiatry, 2017, 06-02, Volume: 76

    Mother-infant contact has a critical role on brain development and behavior. Experiencing early-life adversities (such as maternal separation stress or MS in rodents) results in adaptations of neurotransmission systems, which may subsequently increase the risk of depression symptoms later in life. In this study, we show that Oxytocin (OT) exerted antioxidant and anti-inflammatory properties. Previous studies indicate that neuroinflammation and mitochondrial dysfunction are associated with the pathophysiology of depression. To investigate the antidepressant-like effects of OT, we applied MS paradigm (as a valid animal model of depression) to male mice at postnatal day (PND) 2 to PND 14 (3h daily, 9AM to 12AM) and investigated the depressive-like behaviors of these animals at PND 60 in different groups. Animals in this work were divided into 4 experimental groups: 1) saline-treated, 2) OT-treated, 3) atosiban (OT antagonist)-treated and, 4) OT+ atosiban-treated mice. We used forced swimming test (FST), splash test, sucrose preference test (SPT) and open field test (OFT) for behavioral assessment. Additionally, we used another set of animals to investigate the effects of MS and different treatments on mitochondrial function and the expression of the relevant genes for neuroinflammation. Our results showed that MS provoked depressive- like behaviors in the FST, SPT and splash test. In addition, our molecular findings revealed that MS is capable of inducing abnormal mitochondrial function and immune-inflammatory response in the hippocampus. Further, we observed that treating stressed animals with OT (intracerebroventricular, i.c.v. injection) attenuated the MS-induced depressive-like behaviors through improving mitochondrial function and decreasing the hippocampal expression of immune-inflammatory genes. In conclusion, we showed that MS-induced depressive-like behaviors in adult male mice are associated with abnormal mitochondrial function and immune-inflammatory responses in the hippocampus, and activation of OTergic system has protective effects against negative effects of MS on brain and behavior of animals.

    Topics: Animals; Behavior, Animal; Depression; Disease Models, Animal; Hippocampus; Hormone Antagonists; Inflammation; Male; Maternal Deprivation; Mice; Mitochondrial Diseases; Oxytocin; Vasotocin

2017
Involvement of oxytocin in spinal antinociception in rats with inflammation.
    Brain research, 2003, Sep-05, Volume: 983, Issue:1-2

    The present study was conducted on rats with inflammation induced by subcutaneous injection of carrageenan into the left hindpaw. Intrathecal administration of oxytocin produced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats with inflammation. The antinociceptive effect of oxytocin was blocked by intrathecal administration of atosiban, a selective oxytocin antagonist, indicating that oxytocin receptor mediates oxytocin-induced antinociception in the spinal cord. The oxytocin-induced antinociceptive effect was attenuated by intrathecal administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Furthermore, the antinociceptive effect of oxytocin was attenuated by intrathecal injections of the mu-receptor antagonist beta-funaltrexamine and the kappa-receptor antagonist nor-binaltorphimine, but not by the delta-receptor antagonist naltrindole, illustrating that mu- and kappa-receptors, but not delta-receptor, are involved in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Moreover, intrathecal administration of atosiban alone induced a hyperalgesia in rats with inflammation, indicating that endogenous oxytocin is involved in the transmission and regulation of nociceptive information in the spinal cord of rats with inflammation. The present study showed that both exogenous and endogenous oxytocin displayed antinociception in the spinal cord in rats with inflammation, and mu- and kappa-receptors were involved in oxytocin-induced antinociception.

    Topics: Analgesics; Animals; Carrageenan; Hot Temperature; Inflammation; Injections, Spinal; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oxytocin; Pain; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Spinal Cord; Vasotocin

2003
Oxytocin decreases carrageenan induced inflammation in rats.
    Peptides, 2001, Volume: 22, Issue:9

    The effects of oxytocin on carrageenan-induced inflammation in rat hindpaw was examined. Oxytocin at 100 (P < 0.05) and 1000 microg/kg s.c. (P < 0.05), but not at 1 and 10 microg/kg s.c., reduced the edema of the paw when measured up to 10 h after the injection. An additional experiment showed that the effect was comparable to the effect of the glucocorticoid dexamethasone. No effect was found by oxytocin i.c.v. In addition, rats with carrageenan-induced inflammation given oxytocin (1000 microg/kg s.c.) responded differently to nociceptive mechanical stimulation (P < 0.05) and had a reduced amount of myeloperoxidase (marker for neutrophil recruitment) in the paw (P < 0.01).

    Topics: Animals; Biomarkers; Brain; Carrageenan; Dexamethasone; Dose-Response Relationship, Drug; Drug Interactions; Edema; Hindlimb; Hormone Antagonists; Inflammation; Injections, Intramuscular; Injections, Intraventricular; Injections, Subcutaneous; Male; Oxytocin; Pain Threshold; Peroxidase; Physical Stimulation; Rats; Rats, Sprague-Dawley; Time Factors; Vasotocin

2001