astringin has been researched along with Inflammation* in 2 studies
2 other study(ies) available for astringin and Inflammation
Article | Year |
---|---|
Astringin protects LPS-induced toxicity by suppressing oxidative stress and inflammation via suppression of PI3K/AKT/NF-κB pathway for pediatric acute lung injury.
Acute lung injury (ALI) is a major pathophysiological problem defined by severe inflammation and acute disease with substantial morbidity and death. It is known that lipopolysaccharide (LPS) induces ALI by causing oxidative stress and inflammation. The goal of this study was to investigate the protective effect of astringin on LPS-induced ALI and probable pathways. Astringin is a stilbenoid, the 3-β-D-glucoside of piceatannol, mainly found in the bark of Picea sitchensis. The findings showed that astringin prevented LPS-induced cellular damage by reducing the generation of oxidative stress in LPS-stimulated A549 lung epithelial cells. Furthermore, astringin extensively decreased the production of inflammatory factors such as TNF-α, IL-1β, and IL-6. In addition, the western blot results revealed that the ability of astringin to reduce oxidative stress and the generation of inflammatory cytokines by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway could be the reason for its protective effect against LPS-induced ALI. Overall, the results suggest that astringin could be a possible inhibitor of ALI triggered by LPS for pediatric lung injury. Topics: Acute Lung Injury; Child; Glucosides; Humans; Inflammation; Lipopolysaccharides; Lung; NF-kappa B; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Stilbenes | 2023 |
Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner.
Stilbenoids are a group of polyphenolic compounds found in plants, trees, berries, and nuts. Stilbenoids have been shown to serve an antimicrobial and antifungal function in plants. There is also evidence that as a part of the human diet, stilbenoids play an important role as antioxidants and may have anti-inflammatory effects. The PI3K/Akt pathway is a well-characterized signaling pathway controlling cellular functions involved in growth and cell cycle and in metabolism. There is also increasing evidence to show the involvement of this pathway in the regulation of inflammatory responses. In the present study, an attempt was made to investigate the anti-inflammatory properties of the naturally occurring stilbenoids pinosylvin (1), monomethylpinosylvin (2), resveratrol (3), pterostilbene (4), piceatannol (5), and rhapontigenin (6). Glycosylated derivatives of piceatannol and rhapontigenin, namely, astringin (7) and rhaponticin (8), respectively, were also investigated. In addition to the natural stilbenoids, pinosylvin derivatives (9-13) were synthesized and subjected to the testing of their effects on the PI3K/Akt pathway in inflammatory conditions. The investigated natural stilbenoids (except the glycosylated derivatives) were found to down-regulate Akt phosphorylation, which is a well-acknowledged marker for PI3K activity. It was also found that all of the studied natural stilbenoids had anti-inflammatory effects in vitro. The three most potent stilbenoids, piceatannol, pinosylvin, and pterostilbene, were selected for in vivo testing and were found to suppress inflammatory edema and to down-regulate the production of inflammatory mediators IL6 and MCP1 in carrageenan-induced paw inflammation in mice. When compared to the commercial PI3K inhibitor LY294002, the anti-inflammatory effects appeared to be quite similar. The results reveal hitherto unknown anti-inflammatory effects of natural stilbenoids and suggest that those effects may be mediated via inhibition of the PI3K/Akt pathway. Topics: Animals; Anti-Inflammatory Agents; Biological Products; Cell Line; Chemokine CCL2; Down-Regulation; Inflammation; Inflammation Mediators; Interleukin-6; Macrophages; Male; Mice; Mice, Inbred C57BL; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction | 2018 |